• Title/Summary/Keyword: super-conducting fault current limiter

Search Result 9, Processing Time 0.027 seconds

Hybrid Type Superconducting Fault Current Limiter Modeling using EMTP (EMTP를 이용한 Hybrid Type Superconducting Fault Current Limiter)

  • Park, Se-Ho;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.172-174
    • /
    • 2008
  • A fault current limitation using fault current limiter(FCL) is very important for power system operation. In recent year, a number of research have been performed and still Progressing about the super conducting fault current limiter(SFCL), To protect the power system effectively from the large fault current, several superconducting fault current limiters proposed. However, there are many problem such as cost, recovery and ac loss. To solve these problems, hybrid superconducting fault current limiter(HSFCL) have been proposed. In this paper, HSFCL are modeled using (Electro Magnetic Transient Program - Restructured Version) EMTP-RV.

  • PDF

Design Method for HTS Wire Length of the Small Scale Resistive Type Superconducting Fault Current Limiter Considering System Resistance (계통 저항을 고려한 소용량 저항형 한류기의 초전도 선재 소모 길이 산출 연구)

  • Lee, W.S.;Choi, S.J.;Jang, J.Y.;Hwang, Y.J.;Kang, J.S.;Yang, D.G.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.14-18
    • /
    • 2011
  • Electrical system is changing to smart grid which includes the distributed generations with reusable energy sources in these days. The distributed generations are environmentally friendly and have no concern with depletion problem. But dispatching distributed generations can cause an increase of the fault current. Resistive type super conducting fault current limiter is one of the candidates of solution for the large fault problem in smart grid. In this paper, a design method for the wire length of fault current limiter and the result of short circuit test for small scale modules considering system resistance are introduced.

The Study on The Complex Composition By SFCL and Power Equipments for Fault Detection in HVDC Line (HVDC 선로 내 초전도 한류기와 전력기기들의 복합 구성을 통한 고장 검출에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1113-1118
    • /
    • 2018
  • Protection in HVDC(High Voltage Direct Current) have the very fast velocity of fault detection. Because Fault in HVDC has the fast propagation, large currents, high interruption cost. The focus to velocity caused possibility of errors like a detection error like a high impedance fault. In this paper, Proposed complex composition for get the reliability and velocity. That used SFCL(Super Conducting Fault Current Limiter), Protection Zone and DTS(Distributed Temperature Sensing). The SFCL was detect the fault by quench and DTS&Protection Zone were perceive the detect by variation too. To examine the proposed method, PSCAD/EMTDC simulated. The results of simulation, proposed methods could the detect of fault to whole HVDC line. And that improved the reliability of fault clearing.

Design of the Magnetic Core Reactor for the connection to the Power System of DC Reactor Type High Temperature Superconducting Fault Current Limiter (DC 리액터형 고온초전도한류기의 전력계통 연계를 위한 자기철심리액터의 설계)

  • 임대준;배덕권;김호민;이찬주;윤경용;윤용수;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.322-325
    • /
    • 2002
  • In this paper, the power-linking device connecting the high-Tc super-conducting(HTS) coil to the power system in the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been designed. This design was triggered from the concept that the magnetic energy could be exchanged into the electrical energy each other. Ferromagnetic material is used as the path of magnetic flux. The device mentioned above was named Magnetic Core Reactor(MCR). MCR was designed to minimize the voltage drop caused by copper loss. The current density of the conductor was 1.3 A/mm$^2$ and % voltage drop was 2%.

  • PDF

Stabilized operating condition of resistive superconducting fault current limiter using YBCO film (YBCO film을 이용한 저항형 한류기의 안정적인 동작 조건)

  • 최효상;현옥배;김혜림;황시돌;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.133-135
    • /
    • 2000
  • We fabricated resistive super- conducting fault current limiters (SFCL) based on YBCO thin films grown on a 2" diameter $Al_{2}$O_{3} substrate. The minimum quench current of the current minimum quench current of the current limiting element was about 8 $A_{peak}. This SFCL successfully controlled the fault current below 14.3 $A_{peak} at the voltage of 100$V_{rms}, which is otherwise to increase up to 141$A_{peak}. and the quench completion time is less than 3 msec. The temperature of the current limiting element rose to about 200K in 3 cycles after fault. The SFCL showed reproducible characteristics during hundreds times of repeated experiments.ents.

  • PDF

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

Operational Characteristics of Flux-lock Type SFCL using Series Resonance

  • Lim, Sung-Hun;Han, Byoung-Sung;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2005
  • We analyzed the fault current limiting characteristics of a flux-lock type $high-T_c$ super­conducting fault current limiter (HTSC-FCL) using series resonance between capacitor for series resonance and magnetic field coil which was installed in coil 3. The capacitor for the series resonance in the flux-lock type HTSC-FCL was inserted in series with the magnetic field coil to apply enough magnetic field into HTSC element, which resulted in higher resistance of HTSC element. However, the impedance of the flux lock type HTSC-FCL has started to decrease since the current of coil 3 exceeded one of coil 2 after a fault accident. The decrease in the impedance of the FCL causes the line current to increase and, if continues, the capacitor for the series resonance to be destructed. To avoid this operation, the flux-lock type HTSC-FCL requires an additional device such as fault current interrupter or control circuit for magnetic field. From the experimental results, we investigated the parameter range where the operation as mentioned above for the designed flux-lock type HTSC-FCL using series resonance occurred.

Simultaneous quenching phenomena of resistive superconducting fault current limiter connected in series (직렬연결된 저항형 한류기의 동시퀜치 현상)

  • 최효상;김혜림;임해용;김인선;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.91-94
    • /
    • 2000
  • We fabricated resistive super- conducting fault current limiters (SFCL) based on YBCO thin films grown on 2" diameter $Al_{2}O_{3}$ substrates. Two SFCLs with nearly identical properties. two SFCLs with nearly identical properties were connected in series to investigate simultaneous quenching. There was a difference of several half cycles in their quench starting time, although the difference was not more than 0.1 msec when they were operated separately. This imbalance was removed by connecting a shunt resistor to an SFCL in parallel. Increased power input at high voltages also reduced the initial imbalance in power dissipation. Further efforts on the simultaneous quench in SFCLs connected in series are on the way through methods such as the artificial control of quench speed.peed.

  • PDF

Characteristics of Prototype Solenoid for Basic Design of DC Reactor Type SFCL (유도형 고온초전도한류기의 DC 리액터 설계를 위한 솔레노이드 특성실험)

  • 김민철;안민철;이승제;김영식;김진기;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.213-215
    • /
    • 2003
  • This paper deals with the characteristics of a prototype solenoid for basic design of DC reactor type superconducting fault current limiter (SFCL). The prototype high-Tc Super-conducting (HTS) solenoid was manufactured with 4 stacked Bi-2223 tape. The critical currents were measured with respect to the number of stacks. In order to test the safety of HTS solenoid in quenched state, the transport tests of AC over-current were performed. These experimental results could be applied to the basic design of HTS DC reactor for SFCL effectively.

  • PDF