• Title/Summary/Keyword: sunspot

Search Result 157, Processing Time 0.03 seconds

Construction of Korea Space Weather Prediction Center: VHF Coherent Scatter Radar

  • Hwang, Jung-A;Kwak, Young-Sil;Cho, Kyung-Suk;Kim, Khan-Hyuk;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.4-33
    • /
    • 2008
  • Korea space weather prediction center (KSWPC) in Korea Astronomy and Space Science Institute (KASI) has been constructing several facilities to observe mid- to low-latitude upper atmospheric/ionospheric phenomena; VHF coherent scattering radar, All-sky Imager, and Scintmon. Those new ionospheric facilities can be integrated to produce more reliable space weather forecast and nowcast with the existing facilities; Solar Flare Telescope (SOFT), Solar Optical Observatory's sunspot telescope and solar imaging spectrograph, and Magnetometer. The specification of KASI VHF coherent scattering radar is 40.8 MHz of target frequency, 200 kHz of bandwidth, 24 kW of peak power. The science goal of this radar is to measure the irregularities in E- and F-layers over Korea, especially sporadic-E, spread-F, and traveling ionospheric disturbance (TID). The radar will be installed at Gyerong in a territory of Korean Air force by early 2009.

  • PDF

Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

  • Oh, Suyeon;Kim, Bogyeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

Latitudinal Distribution of Sunspot and North-South Asymmetry Revisited

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.55-66
    • /
    • 2018
  • The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-of-latitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the centroid of the COL does not migrate monotonically toward the equator, appearing to form an 'active latitude'. Furthermore, distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the relationship between the solar variability and terrestrial climate change.

A Time Series Forecasting Using Neural Network by Modified Adaptive learning Rates and Initial Values (적응적 학습방법과 초기값의 개선에 의한 신경망 모형을 이용한 시계열 예측)

  • Yoon, Yeo-Chang;Lee, Sung-Duck
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2609-2614
    • /
    • 1998
  • In this work, we consider the forecasting performance between nearal network and Box-Jenkins method for time series data. A modified learning process is developed for neural network approach at time eries data, ie, properly adaptive learning rates selecting by orthogonal arrays and dynamic selecting of initial values using Easton's cotroller box. We can obtain good starting points with dynamic graphics approach. We use real data sets for this study : the Wolf yearly sunspot numbers between 1700 and 1988.

  • PDF

NONPOTENTIAL PARAMETERS OF SOLAR ACTIVE REGION AR 5747

  • MOON Y.-J.;YUN H. S.;CHOE GWANGSON;PARK Y. D.;MICKEY D. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • Nonpotential characteristics of magnetic fields in AR 5747 are examined using Mees Solar Observatory magnetograms taken on Oct. 20, 1989 to Oct. 22, 1989. The active region showed such violent flaring activities during the observational span that strong X-ray flares took place including a 2B/X3 flare. The magnetogram data were obtained by the Haleakala Stokes Polarimeter which provides simultaneous Stokes profiles of the Fe I doublet 6301.5 and 6302.5. A nonlinear least square method was adopted to derive the magnetic field vectors from the observed Stokes profiles and a multi-step ambiguity solution method was employed to resolve the $180^{\circ}$ ambiguity. From the ambiguity-resolved vector magnetograms, we have derived a set of physical quantities characterizing the field configuration, which are magnetic flux, vertical current density, magnetic shear angle, angular shear, magnetic free energy density, a measure of magnetic field discontinuity MAD and linear force-free coefficient. Our results show that (1) magnetic nonpotentiality is concentrated near the inversion line in the flaring sites, (2) all the physical parameters decreased with time, which may imply that the active region was in a relaxation stage of its evolution, (3) 2-D MAD has similar patterns with other nonpotential parameters, demonstrating that it can be utilized as an useful parameter of flare producing active region, and (4) the linear force-free coefficient could be a evolutionary indicator with a merit as a global nonpotential parameter.

  • PDF

Prediction of the Major Factors for the Analysis of the Erosion Effect on Atomic Oxygen in LEO Satellite Using a Machine Learning Method (LSTM)

  • Kim, You Gwang;Park, Eung Sik;Kim, Byung Chun;Lee, Suk Hoon;Lee, Seo Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.50-56
    • /
    • 2020
  • In this study, we investigated whether long short-term memory (LSTM) can be used in the future to predict F10.7 index data; the F10.7 index is a space environment factor affecting atomic oxygen erosion. Based on this, we compared the prediction performances of LSTM, the Autoregressive integrated moving average (ARIMA) model (which is a traditional statistical prediction model), and the similar pattern searching method used for long-term prediction. The LSTM model yielded superior results compared to the other techniques in the prediction period starting from the max/min points, but presented inferior results in the prediction period including the inflection points. It was found that efficient learning was not achieved, owing to the lack of currently available learning data in the prediction period including the maximum points. To overcome this, we proposed a method to increase the size of the learning samples using the sunspot data and to upgrade the LSTM model.

Recent International Activity of KASI for Space Weather Research

  • Cho, Kyung-Suk;Park, Young-Deuk;Lee, Jae-Jin;Bong, Su-Chan;Kim, Yeon-Han;Hwang, Jung-A;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2010
  • KASI's Solar and Space Weather Research Group (SSWRG) is actively involved in solar and space weather research. Since its inception, the SSWRG has been utilizing ground-based assets for its research, such as the Solar Flare Telescope, Solar Imaging Spectrograph, and Sunspot Telescope. In 2007 SSWRG initiated the Korean Space Weather Prediction Center (KSWPC). The goal of KSWPC is to extend the current ground observation capabilities, construct space weather database and networking, develop prediction models, and expand space weather research. Beginning in 2010, SSWRG plans to expand its research activities by collaborating with new international partners, continuing the development of space weather prediction models and forecast system, and phasing into developing and launching space-based assets. In this talk, we will report on KASI's recent activities of international collaborations with NASA for STEREO (Solar Terrestrial Relations Observatory), SDO (Solar Dynamic Observatory), and Radiation Belt Storm Probe (RBSP).

  • PDF

Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

  • Kim, Roksoon;Park, Jongyeob;Baek, Jihye;Kim, Bogyeung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2017
  • It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  • PDF

한국(韓國) 외환위기(外換危機)의 발생원인(發生原因)에 관한 실증분석(實證分析)

  • Hong, Gi-Seok;Ryu, Deok-Hyeon
    • KDI Journal of Economic Policy
    • /
    • v.21 no.1
    • /
    • pp.59-103
    • /
    • 1999
  • 본 논문의 목적은 아시아, 특히 한국의 외환위기 발생원인을 실증적으로 살펴보는 데 있다. 이를 위하여 본고는 먼저 103개 개발도상국의 1980~97년 동안의 자료를 이용하여 외환위기 발생의 일반적인 원인들을 추정한 다음, 그 결과에 기초하여 한국 외환위기의 발생원인을 살펴보는 접근방법을 취하고 있다. 본고에서는 외환위기의 발생원인을 크게 국내 기초경제여건과 유동성으로 나우어 살펴보고 있는데, 실증결과에 의하면 외환위기 국들은 공통적으로 외환위기 발생 이전에 성장률, 교역조건 등의 기초여건 악화나 외환보유고 등의 유동성 부족을 경험하는 것으로 나타난다. 따라서 외환위기의 발생은 sunspot과 같은 임의적인 요인에 의해 결정되며 미리 예측할 수 없다는 주장은 설득력이 없는 것으로 보인다. 한편 시대별로는, 80년대의 외환위기가 주로 환율 및 통화정책의 실패에 크게 기인한 반면, 90년대의 외환위기에는 실물부문의 악화와 유동성의 부족이 보다 중요한 역할을 한 것으로 추정된다. 이상의 결과에 기초하여 한국의 외환위기를 살펴보면, 먼저 한국의 사전적 외환위기 발생가능성은 결코 낮지 않았던 것으로 보인다. 오히려 96년 당시의 경제상황을 고려할 때 한국은 다른 아시아 외환위기국들보다 더 높은 정도의 외환위기 발생가능성을 내포하고 있었던 것으로 나타난다. 한편 외환위기의 원인면에서는 한국의 경우 다른 외환위기사례에 비하여 교역조건의 악화와 유동성의 부족이 상대적으로 중요한 역할을 한 것으로 나타난다. 따라서 한국의 외환위기는 기초여건(fundamental)의 악화와 유동성(liquidity)의 부족 모두에 기인한 것으로 판단된다.

  • PDF

Performance Analysis of Artificial Neural Network for Expanding the Ionospheric Correction Coverage of GNSS (위성항법시스템의 전리층 보정 가능 영역 확장을 위한 인공 신경망의 성능 분석)

  • Ryu, Gyeong-don;So, Hyoungmin;Park, Heung-won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.409-414
    • /
    • 2018
  • Extrapolating the correction information of ionosphere is essential for expanding wide area differential GPS (WADGPS) service area beyond the reference station network. In this paper, design and analysis of the artificial neural network for expanding the ionospheric correction region will be proposed. First, analysis about influence of each input of neural network were performed. The inputs are the day/year periodic function, sunspot number, and geomagnetic index (Ap). Second, performance analysis with respect to the number of hidden layers and neurons in the neural network is shown. As a result, estimation of total electron contents (TEC) on the high/low latitude regions in solar max(2014) are displayed.