• Title/Summary/Keyword: summer environment

Search Result 2,125, Processing Time 0.028 seconds

Performance of Underwater Communication in Low Salinity Layer at the Western Sea of Jeju (제주도 서부 해역의 저염수층을 고려한 수중통신 성능)

  • Bok, Tae-Hoon;Kim, Ju-Ho;Lee, Chong-Hyun;Bae, Jin-Ho;Paeng, Dong-Guk;Pang, Ig-Chan;Lee, Jong-Kil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • The sound speed of seawater can be calculated by the empirical formula as a function of temperature, salinity and pressure. It is little affected by salinity because the average salinity is 34 psu and varies within a few psu seasonally and spatially in the ocean. Recently, low-salinity water of 24 psu flows into the western sea area of Jeju Island due to the flood of the Yangtze River in China during summer, affecting sound speed profile. In this paper, it was analyzed how environmental changes affected to the underwater communication - the sound speed of low-salinity water was calculated, and the communication channel was estimated by the simulated acoustic rays while the transmitting and receiving depth and the range were varied with and without the low-salinity layer. And The BER (Bit error rate) was calculated by BPSK(Binary phase shift key) modulation and the effects of the low-salinity water on the BER was investigated. The sound speed profile was changed to have positive slope by the low-salinity layer at the sub-surface up to 20 m of depth, forming acoustic wave propagation channel at the sub-surface resulting in the decrease of most of the BER Consequently, this paper suggests that it is important to consider changes of the ocean environment for correctly analyzing the underwater communication and the detection capability.

Distribution Characteristics of Atmospheric Mercury from Two Monitoring Stations: Inside and Outside of Seoul Metropolitan City, Korea (서울시 한남동과 경기도 과천시 지역을 중심으로 한 대기 중 수은의 분포특성 연구)

  • Kim, Ki-Hyun;Kim, Min-Young
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.223-236
    • /
    • 2001
  • The concentration of gaseous mercury (Hg) was measured at hourly intervals along with relevant environmental parameters from two monitoring stations (Hannam and Kwachun) in Seoul metropolitan city during September 1999 to July 2000. Irrespective of the environmental and areal differences in the two locations, the concentrations of observed Hg levels were remarkably compatible each other. The results showed that the mean Hg level in Hannam was measured to be 5.34${\pm}$3.92 ngm$^{-3}$ (N = 2576), while that of Kwachun was 5.25${\pm}$2.53 ngm$^{-3}$ (N = 1992). Using these measurement data, we inspected Hg distribution and behavior at various time scale. When the data were analyzed at 24 hr scale, the distribution patterns for the two areas were distinguished by enrichment in either night(Hannam) or day (Kwachun). The patterns for seasonal distributions were also opposing each other such as the occurrences of peak during winter (Hannam) or summer (Kwachun). In order to analyze the factors affecting Hg distributions between two sites over different time scale, we conducted both correlation and factor analysis on both all data sets and on seasonally divided data groups. Whereas Hg exhibits strong correlations with such parameters as PM (particulate matter), SO$_2$, and NO$_2$, its relationship with meteorological parameters was not significant enough in many cases. The results of factor analysis also indicated that the Hg levels are tightly associated with most pollutants, explaining the largest portions of statistical variance. According to our study, we conclude that patterns of Hg distributions can exhibit variable patterns depending on local source processes which we expect to be diverse among different areas.

  • PDF

Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant (원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Kim, Byung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.209-221
    • /
    • 1994
  • In the case of a severe accident of a nuclear power plant, the whole body dose and the relative importance of the radionuclides during the lifetime of an exposed person were estimated for each exposure pathway with distances from the release point. The external exposure pathways due to immersion of radioactive cloud and deposition of radioactive materials on the ground, and the internal exposure pathways due to inhalation and ingestion of contaminated foodstuffs were considered. The effects due to the ingestion of contaminated foodstuffs were estimated considering the variation of radioactive concentration in the foodstuffs according to deposition time and elapsed time after deposition using a dynamic ingestion pathway model applicable to Korean environment, named 'KORFOOD'. As the results up to 80 km from the release point, the effects due to ingestion of contaminated foodstuffs showed the highest contribution to total exposure dose. The contribution of I isotopes was the highest in the case of the external dose due to immersion of radioactive cloud and internal dose due to inhalation. The contribution of Cs isotopes was highest in the case of the external dose due to deposition of radioactive materials on the ground. In the case of the internal dose due to ingestion of contaminated foodstuffs, Cs deposition in summer and Sr deposition in winter, respectively, were the most dominant radionuclide to whole body.

  • PDF

Pore Water Chemistry of Intertidal Mudflat Sediments: 1. Seasonal Variability of Nutrient Profiles (S, N, P) (조간대 퇴적물의 공극수 지구화학 : 1. 용존 영양염 (S, N, P)의 계절변화)

  • Lee, Chang-Bok;Kim, Dong-Seon
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.8-20
    • /
    • 1990
  • A series of pore water data were obtained during the different time over one year period between October 1987 and October 1988, from a site on a muddy intertidal flat, located in the Kyeong-gi Bay, west coast of Korea, The results have revealed that the tidal flat is an environment of active nutrient the subface supplied by the overlying seawater is almost completely removed from the pore water at depth of about 10 cm below the sediment surface. The nutrients such as ammonium and phosphate are produced through this process and subsequently accumulated in the pore water forming steep gradients near the sediment surface. Below the main sulfate redirection zone, a secondary peak of dissolved sulfate was often observed. Greal seasonal variation of the pore water nutrient profiles was observed, which was particularly clear in their maximum concentration as well as in their concentration gradient. The rate constants of sulfate reduction and nutrient regeneration, estimated by using a diagenetic model (Berner, 1980), differ by an order of magnitude between the summer and winter seasons. The difference in sediment temperature may account for most of the calculated variation. The C:N:P ratio, calculated from the pore water nutrient gradients also exhibits a slight seasonal difference. The organic matter being decomposed by sulfate reduction appears to be depleted in depleted in nitrogen, compared to the average marine organic matter.

  • PDF

Characteristics and Inter-annual Variability of Zooplankton Dynamics in the Middle Part of the River (Nakdong River) (낙동강 중류지점에서의 동물플랑크톤 동태의 연간 변이 및 특성(낙동강))

  • Chang, Kwang-Hyeon;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.412-419
    • /
    • 2005
  • The dynamics of zooplankton community and its relationship with environments were studied at the middle stretch (Waekwan, RK; river kilometer; above 175 km from the estuary dam) of large regulated river, Nakdong River from 1998 to 2002. There were distinct inter-annual variations and seasonal changes in total zooplankton abundance in the study site (ANOVA, p<0.01), displaying similar pattern in three years from 1999 to 2001 except 1998 and 2002. The annual average rotifers abundance during the study period was 43${\pm}76 ind. $L^{-1}$ (mean${\pm}$s.d., n = 118), followed by adult copepodids (1.6${\pm}$4.8 ind. $L^{-1}$), and small cladocerans (0.4${\pm}$1.2 ind. $L^{-1}$). Among the rotifers, Brachionus spp. Polyarthra spp., Colurella spp., Keratella spp.·, and Trichocerca spp. were the most common taxa. These species occupied more than 80% of the total rotifer abundance throughout the study period. Total zooplankton abundance rapidly increased in spring and fall and remained low throughout the winter. During summer, zooplankton dynamics seemed to be largely affected by hydrological parameters. Overall, rather the external factors (hydrological factors of the river) than internal factors (food condition for zooplankton such as phytoplankton biomass) appear to be responsible for changes in zooplankton dynamics in the middle stretch of the river.

Habitat Selection and Environmental Characters of Acheilognathus signifer (묵납자루, Acheilognathus signifer의 서식지 선택과 환경특성)

  • Baek, Hyun-Min;Song, Ho-Bok
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.352-360
    • /
    • 2005
  • Acheilognathus signifer is distributed widely in high density in the Naechon-stream. The order of this-stream was 2 ${\sim}$ 4 and the water width is wide but the depth is relatively shallow and the sinuosity is 1.83, which indicates a meandering stream. The water width/stream width ratio is 1.59, which suggests moderate entrenchment. Naechon-stream was classed as B type by Rosgen (1995). The natural habitat of A. signifer is a slow flow velocity pool, like a backwater pool, which is made up of piled up boulders that restricts the flow of water. The stream bed is made up of boulders and sands that enable the spawning host to inhabit. A. signifer selects a microhabitat where the boulders furnish hiding places. The Habitat of A. signifer is strongly affected by the existence or not there of U. douglasiae sinuolatus. After hatching from the mussel, A. signifer inhabits the surface of the water. It then moves to the low layer once it acquires swimming ability. While A. signifer inhabits the river in summer, A. signifer moves to the deeper layers in winter, where there are the refuge like rocks and boulders. In spring A. signifer moves from the deep water to the river line where the mussels reside.

Abundance of Autotrophic Picoplankton and Their Contribution to Phytoplankton Biomass in Korean Lakes (국내 호소에서 autotrophic picoplankton의 밀도 및 식물플랑크톤 생물량에 대한 기여도)

  • Kim, Bom-Chul;Jun, Man-Sig;Heo, Woo-Myung;Kim, Ho-Sub;Choi, Yon-Kyu
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.141-152
    • /
    • 2001
  • Abundance of autotrophic picoplankton (APP) and their contribution to phytoplankton biomass were assessed in seven brackish lagoons and five freshwater reservoirs in the summer season. Phycocyanin-rich picocyanobacteria dominated APP in lagoons, while phycoerythrin-rich picocyanobacteria dominated APP in freshwater reservoirs. The cell density of APP ranged from $3.6{\times}10^3$ to $5.0{\times}10^6\;cells/ml$ (median $2.5{\times}10^5$) in brackish lagoons and from $3.8{\times}10^4$ to $3.6{\times}10^5\;cells/ml$ (mdian $1.3{\times}10^5$) in reservoirs. Carbon biomass ranged from 1.0 to $1,385.0\;{\mu}gC/L$ in lagoons and from 15.3 to $128.2\;{\mu}gC/L$ in reservoirs. APP cell density in Lake Kyungpo was over $10^6\;cells/ml$in all three surveys, which is one of the highest values recorded in all over the world. During the thermal stratification in Lake Soyang, the maximum abundance of APP and their maximum contribution to phytoplankton biomass were observed near the thermocline. This study showed that APP sometimes can contribute significantly to phytoplankton biomass both in lagoons and reservoirs with the range from 0.1 to 85.0%. APP which have been overlooked in the past studies appears to be important primary producers in Korean lake ecosystem.

  • PDF

Characteristics of DOC Release from Sediment in Eutrophic Lake (부영양호 퇴적층으로부터 용존유기물의 용출특성)

  • Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.304-310
    • /
    • 2003
  • This study was conducted to estimate the internal dissolved organic carbon (DOC) loading from sediment in eutrophic shallow Lake Kasumigaura. Contents of water and organic carbon were about 80% and 6.3% with depth in the sediment, respectively. The highest DOC concentration in porewater (104 mg C/l) was observed in September suggesting that the porewater could play an important role as an internal loading of DOC. Results of DOC release experiments showed that the labile-DOC (L-DOC) release was not detected in the oxic condition, while refractory-DOC(R-DOC) release was detected. The L-DOC and R-DOC release rates in the anoxic codition ranged from 14.5${\sim}$ 48.6, 14.4 ${\sim}$27.3 mgC $m^{-2}$ $d^{-2}$, respectively. The current study showed that L-DOC released in the oxic condition was rapidly utilized by aerobic bacteria, in contrast, L-DOC and R-DOC released in anoxic codition were slowly utilized by anaerobic bacteria. These results suggested that L-DOC and R-DOC were closely related to sediment release and most of the R-DOC released could be an important source of DOC in eutrophic lakes during summer. Therefore, R-DOC pool should be added as one of the important energy source for microbial-based aquatic food webs in eutrophic lakes.

Seasonal Variability of Thermal Structure and Heat Flux in the Juam Reservoir (주암호의 계절별 수온 구조와 열수지 변화)

  • Sun, Youn-Jong;Cho, Cheol;Kim, Byong-Chun;Huh, In-Aa;Yoon, Jun-Heon;Chang, Nam-Ik;Cha, Sung-Sik;Cho, Yang-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.277-285
    • /
    • 2003
  • Temperature profiles were observed to understand seasonal variation of thermal structures in the Juam reservoir from March 2000 to May 2001. Heat flux which affects thermal structures was calculated by observed water temperature and meteorological data. Temperature became homogeneous vertically by convection due to the surface cooling in winter. Maximum heat loss through the surface (109.45W/$m^2$) occurred in December. There was a horizontal gradient of water temperature in winter. The temperature was $3^{\circ}C$ at upstream and $5^{\circ}C$ near the dam. The surface temperature increased by the increase of solar radiation in spring and summer. Maximum heat gained through the surface was 101.95 W/$m^2$ in July. Maximum surface temperature was $29^{\circ}C$ in August, whereas the bottom water was $7^{\circ}C.$ Surface mixed layer became thicker and its temperature decreased by surface heat loss in fall and winter.

Daily Variations of Water Turbidity and Particle Distribution of High Turbid-Water in Paltang Reservoir, Korea (팔당호에서 수중 탁도의 일 변동과 고탁수의 입자 분포)

  • Shin, Jae-Ki;Kang, Chang-Keun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.257-268
    • /
    • 2003
  • Daily monitoring was conducted to elucidate the changes in turbidity and distribution of particles in the turbid water of a river-type reservoir (Paltang Reservoir) from 1999 to 2001. Water turbidity and the particle distribution of turbid water were principally affected by meteorological factors particularly rainfall patterns and hydrological factors such as inflow and outflow. The mean concentration of turbidity was constant each year, with the concentration of less than 10 NTU accounting for 85%. Seasonal characteristics were remarkable, with winter and spring having < 5 NTU, autumn 5 ${\sim}$ 10 NTU, and summer > 20 NTU. Unlike hydrological changes, maximum turbidity was observed from late July to early August and continuously increased from 1999 to 2001. In particular, the maximum turbidity of reservoirs remarkably increased toward the lower part of reservoir in 2001. Discharge and turbidity increased or decreased slowly in 1999; in contrast, turbidity rapidly increased in the early rainfall period of 2000 and 2001 but later decreased as discharge increased. In the particles of turbid water, clay ingredients were more densely distributed and more dominant in all stations. Of the total particles in turbid water, clay constituted 63.9${\sim}$66.6% and silt 33.4${\sim}$36.1% to account for a combined total of 98.9 ${\sim}$ 100%. Sand made up less than 1.1%. The turbidity of river-type reservoir was also found to be mainly affected by the biomass of plankton in a non-rainfall period. During a rainfall period, however, the quantity and relative ratio of inorganic particles depending on the soil components affected turbidity.