• Title/Summary/Keyword: summer cultivation

Search Result 302, Processing Time 0.031 seconds

The Influence of Hydrogen Peroxide Treatment on Water Stress, Photosynthesis and Thermotolerance of Cucumber(Cucumis sativus) in Greenhouse Cultivation during Summer (Hydrogen Peroxide 처리가 여름철 시설오이의 수분 스트레스, 광합성, 내서성에 미치는 영향)

  • Woo Young-Hoe;Kim Hyung-Jun;Kim Tae-Young;Kim Ki-Deog;Huh Yun-Chan;Chun Hee;Cho Ill-Hwan;Nam Yooun-Il;Ko Kwan-Dal;Lee Kwan-Ho;Hong Kue-Hyon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This studies were carried out in summer season to increase high temperature tolerance using hydrogen peroxide treatments on cucumber in greenhouse. The water stress of cucumber in greenhouse by the hydrogen peroxide treatments showed as control>250 mM>500 mM treatments in order. The photosynthesis rate of cucumber at $30^{\circ}C$ did not show difference with each hydrogen peroxide treatment in temperature controlled greenhouse. However, the photosynthesis rate of cucumber in the control and hydrogen peroxide treatments at $40^{\circ}C$ was significantly different. The photosynthesis rate of cucumber in combined treatment with 1,000 $mg{\cdot}L^{-1}\;CO_2$ supply and hydrogen peroxide was also higher than control, however, there was no different of photosynthesis in 250 mM and 500 mM treatment. The value of $F_v/F_m$ and $F_m/F_o$ of chlorophyll fluorescent in 500 mM hydrogen peroxide treatment at $40^{\circ}C$ was highest. Also the activity of POD, the antioxidant enzyme, was higher with high hydrogen peroxide concentration than the other treatments. The high temperature limits for growth were $43^{\circ}C$ in the control, $44^{\circ}C$ in the 250 mM and $46^{\circ}C$ in the 500 mM according to analyze chlorophyll fluorescent $F_o$. The high temperature tolerance in cucumber increased approximately $3^{\circ}C$ by the hydrogen peroxide treatments under this experiment conditions.

Characteristics of the New Ever-bearing Strawberry 'Yeolha' for High Yield (다수성 사계성 딸기 '열하' 육성)

  • Lee, Jong Nam;Kim, Hye Jin;Kim, Ki Deog;Yoo, Dong Lim;Suh, Jong Taek
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.739-743
    • /
    • 2014
  • This work characterizes 'Yeolha', a new strawberry (Fragaria ${\times}$ ananassa Duch.) cultivar that was released by the Highland Agriculture Research Center, RDA, in 2013. This cultivar originated from a 2008 cross between 'Goha' and 'Elsinyo' and showed excellent ever-bearing characteristics including continuous a flowering habit under long-day and high temperature conditions. It was originally named 'Saebong No. 5' after examining its characteristics and productivity in summer culture from 2010 to 2013. After two regional adaptability tests in 2012, it was selected as an elite cultivar and renamed 'Yeolha'. The general characteristics of 'Yeolha' include a semi-spreading plant type, elliptic leaves, and strong vigor in growth. Its fruit is conical and red. T he s oluble s olids content of 'Yeolha' is 8 .6%, w hich is 0.6% h ig her than t hat of 'Flamenco', b ut f ruit hardness is lower than that of 'Flamenco'. The average fruit weight of 'Yeolha' is about 12.1 g and the marketable yield is $28,133kg{\cdot}ha^{-1}$, which is 117% higher than that of 'Flamenco'. 'Yeolha' is resistant against Fusarium wilt. In addition, 'Yeolha' is suitable for four-season cultivation as a high harvesting cultivar because it shows continuous flowering under long-day and high temperature conditions.

Annual Productivity and Adaptability of Growing Area in Shallot (Allium cepa var. ascalonicum Backer) (Shallot(Allium cepa var. ascalonicum Backer)의 연도별 생산성과 지대별 적응성)

  • Cho, Yong-Cho;Lee, Jong-Tae;Park, Yoo-Gyeong;Jeong, Byoung-Ryong
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.160-167
    • /
    • 2011
  • Shallot is a foreign crop introduced from France in 1995 as a new overwintering field crop with an aim to develop as an export crop. During the introductory cultivation trials, several problems were raised such as premature growth depression in early summer, sensitivity to summer moisture, and weakened vigor of the seed bulbs following successive propagations. This study was conducted to develop proper cultural methods based on annual productivity and adaptability of growing area to address and suggest solutions to some of these problems. Bulb weight was 18.7 g and bulb yield per 10a was 4,113 kg in 1995. In 1996, bulb weight increased to 25.8 g, while bulbs yield per 10a deceased to 2,013 kg. This trend continued in 1997 so that bulb weight increased, and yield per 10a decreased as compared to those in 1996. However, in 1998, both bulb weight (21.1 kg) and yield per 10a (1,246 kg) decreased significantly as compared to those of the previous years. Plant growth from planting to April in the coastal area was better than in other areas. However, the plant growth thereafter until early July was better in the semi-highland area. As a result, the bulb yield in the semi-highland area was 57% more than that in the lowland areas such as the coastal area.

Effects of Shield Materials on the Growth and Yield Characteristics of Melon Grown inside a Plastic Greenhouse in Summer Season (고온기 멜론 시설재배 시 자재별 차광 효과)

  • Lee, Jae Han;Lee, Jung Sup;Kwon, Joon Kook;Yeo, Kyung Hwan;Bang, Ji Woong;Kim, Jin Hyun;Lee, Choung Keun;Park, Kyoung Sub;Myung, Dong Ju
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.304-311
    • /
    • 2021
  • This Experiment was conducted to determine the effects of light shield materials when melon grown inside a plastic greenhouse in summer season. The average temperatures were 36.6℃, 34.5℃ and 34.0℃ respectively for the control(non-shield), coating agent, and the white net. The light transmittances were 69% and 75%, respectively inside the greenhouse treated with the coating agent and white net immediately after applicants, compared with that inside the control greenhouse. At the 40 and 80 days after treatment, the light transmittances for the coating agent were 92% and 98%, respectively, indicating it was slowly decomposed and removed, but there was no change in the transmittance for the white net. While the leaf number did not differ among the treatments, the plant height was higher in the white net and shading agent than in control. The weight of the leaves, fresh-weight and dry-weight were no different from that of shading, but it became heavier in the later stages. The marketable fruit yield was increased by 6% for white nets and 5% for the coating agent compared to control, there was no statistical significance. Therefore, coating agent is considered as an effective method to lower temperature during high temperature period, but it is preferable to use it in consideration of cultivation period, because the coating agent is gradually removed.

Effect of Side Openings and Greenhouse Width on the Natural Ventilation Performance (측창 및 온실 폭이 자연환기 성능에 미치는 영향)

  • Hyun Woo Lee;Young Hoe Woo;Jong Won Lee
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2023
  • In summer, the natural ventilation performance for varying greenhouse width is very important in the glasshouses for year round cultivation. The effect of the side openings and greenhouse width on natural ventilation performance was analyzed by simulation. The necessary ventilation rate with different solar radiation transmittance increased significantly when the outside temperature grows higher. The necessary ventilation rate of 40% transmittance was about half of that of 90% transmittance. In consequence, shading effect on temperature control in greenhouse is significant in summer. When the total area of the openings for ventilation is constant, the maximum ventilation rate happens when the area of roof openings is equal to the area of side openings. This maximum ventilation rate is about 3 times of that of the greenhouse with roof openings and without side openings. Therefore, the side openings are advantageous to improve the natural ventilation in greenhouses. As the greenhouse width increases, the influence of side openings on the ventilation rate is becoming smaller. If the natural ventilation rate of the greenhouse with roof and side openings is to become double of that of the roof openings only, the width should be narrower than 38.4m for the Venlo type and 64m for Wide span type.

The Development of Wide-span Plastic Film Greenhouse for Strawberry Seedling Cultivation (딸기 육묘용 광폭 플라스틱 필름 온실 개발)

  • Man Kwon Choi;Myeong Whan Cho;Hyun Ho Shin;Ki Bum Kweon
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2023
  • This study aimed to develop an optimal greenhouse model for strawberry seedling during the summer high-temperature period based on the results of field surveys. We conducted a survey on the structure types of 46 strawberry seedling farms nationwide, including width, ridge height, eaves height, ventilation method, seedling bed width, and spacing. Based on the survey results, we derived the optimal greenhouse model by considering various factors. The greenhouse width was set at 14 meters to maximize the efficiency of seedling beds and overall space. The height was determined at 2 meters, taking into account ventilation during the summer season. To reduce stress on the supporting structure due to snow loads, we established a reinforcement installation angle of 50 degrees. We analyzed two different models that use support beams with dimensions of φ48.1×2.1t and φ59.9×3.2t, respectively, to ensure structural safety against meteorological disasters, considering regional design wind speeds and snow accumulation. We utilized these developed greenhouse model to conduct strawberry seedling experiments, resulting in a high survival rate of average 93.2%. These findings confirm the usefulness of the strawberry seedling greenhouse in improving the seedling environment and enhancing overall efficiency.

Thermal Storage Characteristics of Low Temperature Phase Change Materials for Thermal Environmental Control of Protected Cultivation System (시설 농업의 열환경조절을 위한 저온 상변화 물질의 축열 특성)

  • 송현갑;유영선;노정근;박종길
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.216-224
    • /
    • 1997
  • In the recent 10 years the protected cultivation area in Korea has been increased rapidly, and now it is very important issue to develop the heating and cooling system using the renewable energy, because the greenhouse heating and cooling cost is increased with the fossil fuel price rises. Actually the development of the cooling system is more difficult than that of the heating system, since the cooling load of greenhouse in the summer season is 2―3 times larger than the heating load in the winter season. In this study low temperature phase change materials (LTPCM) for the cold storage system were selected and developed. The theoretical and experimental analysis of thermal characteristics of LTPCM makes it possible to control the phase change temperature and stabilize the thermo-physical properties. LTPCM developed in this study has good advantages to be used as the cold storage not only for the house and working space in factory but also for the cold storage of agricultural and live-stock products.

  • PDF

Investigation of the Crop Load for Tomato and Paprika in the Greenhouse (온실내 재배작물인 토마토 및 파프리카의 작물하중 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Yu, Chan;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.234-240
    • /
    • 2013
  • The purpose of this study was to provide basic data used in greenhouse design, and for this purpose, the crop loads of tomato and paprika which have high crop load among crops cultivated in greenhouse were measured. The maximum differences in lowest and mean temperatures between cultivation year and normal years for winter season were -5.6 and $-4.9^{\circ}C$, respectively and those for summer season were 3.0 and $1.5^{\circ}C$, respectively. The calibration of push & pull gauge indicated approximate 0.99 of coefficient of determination, representing very high association. The planting densities of paprika and tomato were 3.43, 3.56 and $2.13plants{\cdot}m^{-2}$, respectively. The yields were 4.1, 4.3 and $16.2kg{\cdot}plant^{-1}$, corresponding to 14.1, 15.2 and $34.5kg{\cdot}m^{-2}$ of yield per unit area. The maximum loads were 1.3, 1.5 and $3.3kg{\cdot}plant^{-1}$, respectively. When the paprika were hanged on cross beam, the total crop load applied to it was estimated to be $15.3{\sim}15.9kg{\cdot}m^{-2}$, and when the weights of gutters supporting the cultivation beds, the total weights were $26.0{\sim}26.9kg{\cdot}m^{-2}$.

A Thermal Time - Based Phenology Estimation in Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) (온도시간 기반의 배추 생육단계 추정)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.333-339
    • /
    • 2015
  • A thermal time-based phenology model of Kimchi cabbage was developed by using the field observed growth and temperature data for the purpose of accurately predicting heading and harvest dates among diverse cropping systems. In this model the lifecycle of Kimchi cabbage was separated into the growth stage and the heading stage, while the growth amount of each stage was calculated by optimal mathematical functions describing the response curves for different temperature regimes. The parameter for individual functions were derived from the 2012-2014 crop status report collected from seven farms with different cropping systems located in major Kimchi cabbage production area of South Korea (i.e., alpine Gangwon Province for the summer cultivation and coastal plains in Jeonnam Province for the autumn cultivation). For the model validation, we used an independent data set consisting of local temperature data restored by a geospatial correction scheme and observed harvest dates from 17 farms. The results showed that the root mean square error averaged across the location and time period (2012-2014) was 5.3 days for the harvest date. This model is expected to enhance the utilization of the Korea Meteorological Administration's daily temperature data in issuing agrometeorological forecasts for developmental stages of Kimchi cabbage grown widely in South Korea.

[ $CO_2$ ] Content in Golf Green Rhizosphere (골프장 putting green 근권(根圈)에서의 이산화탄소 $(CO_2)$ 함유량)

  • Chong S. K.;Boniak Richard;Indorante S.;Ok C. H.;Buschschulte D.
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • Anaerobic soils limit the amount of free oxygen available in the rhizosphere and therefore will impede grass root development and restrain nutrient availability for turf growth. An in-situ study was conducted on existing greens to investigate the relationship between $CO_2$ content in the rhizosphere and turf quality. Nine greens were selected in the study. On each green, five 1-m diameter circular plots were randomly selected for conducting the experiment. The greens were sampled 7 times from August, 1998 to August, 1999. Data collected from each plot included turf quality index, $CO_2$ content, and physical properties of the rooting mixtures. Turf quality declined drastically when $CO_2$ content in rhizosphere increased to $5\;to\;6{\mu}LL^{-1}$ during the late summer season. The $CO_2$ content increased as water content in the root zone increased, but was inversely related to infiltration rate. Cultivation of a golf green may reduce $CO_2$ content in the rhizosphere, but the benefit of cultivation decreased with time.