• Title/Summary/Keyword: summation of absolute difference

Search Result 3, Processing Time 0.009 seconds

Three-Dimensional Map System Using Integral Imaging Technique (집적 영상 기술을 이용한 3차원 지도 시스템)

  • Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2799-2804
    • /
    • 2014
  • In this paper, we suggest three-dimensional information extraction map system using integral imaging technique. Integral imaging can record multiple elemental images with different perspectives using a 2D image acquisition device with lenslet array. Using these images, integral imaging can obtain 3D information and display 3D image. In this paper, the position difference between elemental images can be obtained using summation of absolute difference (SAD), and then 3D information can be extracted. Therefore, this technique can find the height information of 3D objects.

Improving Performance of Crimp Signal Analysis by Falling Edge Alignment and Parameter Error Estimation in CFM (CFM에서 하강 에지 정렬과 파라미터 에러 평가에 의한 크림프 시그널 분석 성능 향상)

  • Aurecianus, Steven;Kang, Taesam;Han, Chung Gwon;Park, Jungkeun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.686-692
    • /
    • 2016
  • A Crimp Force Monitor (CFM) is equipment for detecting crimp errors by analyzing crimp signals obtained from force and strain sensors. The analysis is commonly performed by aligning a measured crimp signal with a reference signal and comparing their difference. Current analysis methods often suffer from wrong alignments that result in false negative detections. This paper presents a new crimp signal analysis method in CFM. First, a falling edge alignment is proposed that matches falling edges of the measured and the reference signals by minimizing the absolute difference summation. Second, a signal parameter error is introduced to evaluate the crimp quality difference between the measured signal and the reference. For calculating the signal parameter error, part of a signal is identified and divided into several regions to maximize the signal parameter errors. Experiments showed that the proposed method can improve the signal alignment and accurately detect bad crimps especially with the strain sensor.

Preliminary Study on the MR Temperature Mapping using Center Array-Sequencing Phase Unwrapping Algorithm (Center Array-Sequencing 위상펼침 기법의 MR 온도영상 적용에 관한 기초연구)

  • Tan, Kee Chin;Kim, Tae-Hyung;Chun, Song-I;Han, Yong-Hee;Choi, Ki-Seung;Lee, Kwang-Sig;Jun, Jae-Ryang;Eun, Choong-Ki;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2008
  • Purpose : To investigate the feasibility and accuracy of Proton Resonance Frequency (PRF) shift based magnetic resonance (MR) temperature mapping utilizing the self-developed center array-sequencing phase unwrapping (PU) method for non-invasive temperature monitoring. Materials and Methods : The computer simulation was done on the PU algorithm for performance evaluation before further application to MR thermometry. The MR experiments were conducted in two approaches namely PU experiment, and temperature mapping experiment based on the PU technique with all the image postprocessing implemented in MATLAB. A 1.5T MR scanner employing a knee coil with $T2^*$ GRE (Gradient Recalled Echo) pulse sequence were used throughout the experiments. Various subjects such as water phantom, orange, and agarose gel phantom were used for the assessment of the self-developed PU algorithm. The MR temperature mapping experiment was initially attempted on the agarose gel phantom only with the application of a custom-made thermoregulating water pump as the heating source. Heat was generated to the phantom via hot water circulation whilst temperature variation was observed with T-type thermocouple. The PU program was implemented on the reconstructed wrapped phase images prior to map the temperature distribution of subjects. As the temperature change is directly proportional to the phase difference map, the absolute temperature could be estimated from the summation of the computed temperature difference with the measured ambient temperature of subjects. Results : The PU technique successfully recovered and removed the phase wrapping artifacts on MR phase images with various subjects by producing a smooth and continuous phase map thus producing a more reliable temperature map. Conclusion : This work presented a rapid, and robust self-developed center array-sequencing PU algorithm feasible for the application of MR temperature mapping according to the PRF phase shift property.

  • PDF