• Title/Summary/Keyword: sulfonium salt

Search Result 5, Processing Time 0.02 seconds

Thermoinitiated Cationic Polymerization of Epoxy Resin by Sulfonium Salts for Latent Curing (Sulfonium 염에 의한 Epoxy 수지의 잠재성 경화형 열 개시 양이온 중합반응)

  • Kim, Sun Hee;Shin, Min Jae;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • A latent curing system was necessary for the anisotropic conducting film (ACF), and a fast reaction system was also necessary to fast production. In this study, the benzylsulfonium salts were synthesized and were used as latent curing initiators for epoxy resin. These benzylsulfonium compounds exhibited a long shelf life with epoxy resin. The curing behaviors of an epoxy resin with these sulfonium salts were investigated using differential scanning calorimetry (DSC), and the curing times were determined at $150^{\circ}C$ using an indentation method.

Synthesis and Electrical Conductivities of Poly(1,4-phenylenevinylene-co-2,3,5,6-tetramethyl-1,4-phenylenevinylene)s

  • Jin, Jung-Il;Kang, Heung-Joong;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.415-420
    • /
    • 1990
  • A series of copolymers of poly(1,4-phenylenevinylene-co-2,3,5,6-tetramethyl- 1,4-phenylenevinylene), poly(PV-co-TMPV), were prepared in film forms from the precursor polymer films. The sulfonium salt precursor polymers were synthesized by copolymerization of the mixtures of the respective bis(sulfonium salt) monomers. All of the copolymer films could be doped with $FeCl_3$ to have high electrical conductivities and they showed good air stability. The maximum conductivity of the $FeCl_3$-doped films ranged $10^{-3}\;to\;10^2Scm^{-1}$ depending on the composition of the copolymer films. However, these copolymer films could not be doped with iodine. The coplanarity of PV and TMPV units in the main chain appears to be affected by steric effect of the methyl groups in the TMPV units.

Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2- (R = 2-, 3-, and 4-Pyridinemethane) Clusters

  • Kim, Yu-Jin;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • The $[Fe_4S_4]^{2+}$ clusters with 2-, 3-, and 4-pyridinemethanethiolate (S2-Pic, S3-Pic, and S4-Pic, respectively) terminal ligands have been synthesized from the ligand substitution reaction of the $(^nBu_4N)_2[Fe_4S_4Cl_4]$ (I) cluster. The new $(^nBu_4N)_2[Fe_4S_4(SR)_4]$ (R = 2-Pic; II, 3-Pic; III, 4-Pic; IV) clusters were characterized by FTIR and UV-Vis spectroscopy. Cluster II was crystallized in the monoclinic space group C2/c with a = 24.530 (5) $\AA$, b = 24.636(4) $\AA$, c = 21.762(4) $\AA$, ${\beta}=103.253(3)^{\circ}$, and Z = 8. The X-ray structure of II showed two unique 2:2 site-differentiated $[Fe_4S_4]^{2+}$ clusters due to the bidentate-mode coordination by 2-pyridinemethanethiolate ligands. Cluster III was crystallized in the same monoclinic space group C2/c with a = 26.0740(18) $\AA$, b = 23.3195(16) $\AA$, c = 22.3720(15) $\AA$, ${\beta}=100.467(2)^{\circ}$, and Z = 8. The 3-pyridinemethanethiolate ligand of III was coordinated to the $[Fe_4S_4]^{2+}$ core as a terminal mode. Cluster IV with 4-pyridinemethanethiolate ligands was found to have a similar structure to the cluster III. Fully reversible $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ redox waves were observed from all three clusters by cyclic voltammetry measurement. The electrochemical potentials for the $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ transition decreased in the order of II, III and IV, and the reduction potential changes by the ligands were explained based on the structural differences among the complexes. The complex III was reacted with sulfonium salt of $[PhMeSCH_2-p-C_6H_4CN](BF_4)$ in MeCN to test possible radical-involving reaction as a functional model of the [$Fe_4S_4$]-SAM (S-adenosylmethionine) cofactor. However, the isolated reaction products of 3-pyridinemethanethiolate-p-cyanobenzylsulfide and thioanisole suggested that the reaction followed an ionic mechanism and the products formed from the terminal ligand attack to the sulfonium.

Synthesis and Photopolymerization Characterization of Propenyl Ether Monomers (프로페닐 에테르 단량체들의 합성과 광중합 특성)

  • Kim, Ki-Sang;Shim, Sang-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • The propenyl ether-type monomers which are applicable for cationic photo-polymerization were synthesized by the condensation reaction of mono and di-functional alcohol with allyl bromide. To examine photo-curable reactivity, these monomers were combined with cationic photoinitiator to prepare coating composition. As a result, the initial rate of polymerization of POMB in mono propenyl ether type was 10.2, which was relatively lower than BPOB in di-propenyl ethers type. However, POMB containing 1.5mol% photoinitiator almost quantitatively reacted within 90 seconds. In addition, Sulfonium salt type photo-initiators containing long-alkyl group showed good solubility with monomers and apperaed to have comparatively higher rate of polymerization and conversion ratio when applying DPSA and DPST which have high acidity on all monomers.