• Title/Summary/Keyword: sulfonated polystyrene.

Search Result 28, Processing Time 0.027 seconds

A Study on the Characteristics and Preparation of the Cation Exchange Membrane Using Various Type of Polystyrene (폴리스티렌을 이용한 전기투석용 양이온교환 막의 제조 및 그 특성에 관한 연구)

  • Kim, Hi Youl;Kim, Jong Hwa;Park, Keun Ho;Song, Ju Yeong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.340-344
    • /
    • 2006
  • We prepared porous cation exchange membrane using polystyrene such as, EPS (expanded polystyrene), SAN (styrene acrylonitrile copolymer) and HIPS (high impact polystyrene). These three kind of polystyrene were sulfonated by acetyl sulfate to make sulfonated porous cation exchange membrane such as, SEPS (sulfonated expanded polystyrene), SSAN (sulfonated styrene acrylonitrile copolymer)and SHIPS (sulfonated high impact polystyrene). SEM was employed to validate porous structure of membrane, and IR spectroscopy was used to validate sulfonation rate of ion exchange membrane. As a results, ion exchange capacity was increased with an amount of sulfuric acid in reactants and cation exchange membrane showed the selectivity to a cation and showed the exclusivity to an anion.

Diffusion of Water in Sulfonated Polystyrene Ionomers

  • Manoj, N.R.;Ratna, D.;Weiss, R.A.
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.26-31
    • /
    • 2004
  • Using gravimetry, we have studied the diffusion of water into sulfonated polystyrene ionomers. Diffusion coefficients were calculated from Fick's equation. The water sorption was found to be dependent on the ion content (3.6-11 mol%) and the nature of the cation (H, Na, Li, or Zn). The sorption kinetics indicates a slight deviation from Fickian behavior. We used the analytical solution of Fick's equation to evaluate the concentration profiles, which are in good agreement with the experimental results.

Synthesis and Characterization of ${\omega}-Sulfonated$ Polystyrene-stabilized Cadmium Sulfide Nanoclusters

  • Jin Yong Hyun;Kim Jungahn;Im Seung Soon
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.604-607
    • /
    • 2004
  • We report an important and useful method for preparing ${\omega}-sulfonated$ polystyrene-stabilized cadmium sulfide (CdS) nanoclusters. The ${\omega}-sulfonated$ polystyrene $(M_n\;=\;5000\;g/mol)$ was prepared successfully through chain-end sulfonation of poly(styryl)lithium using 1,3-propanesultone; the resulting polymer was used successfully as a polymeric stabilizing agent for the preparation of semiconductor CdS nanoclusters by reduction of cadmium acetate in a mixture of toluene and methanol (9:1, v/v). The nanoclusters that formed were characterized by a combination of transmission electron microscopy, X-ray diffraction, and UVN is spectroscopic analysis. The ${\omega}-sulfonated$ polystyrene-stabilized CdS nanoclusters synthesized in this study exhibited the cubic phase (zinc-blende phase) structure in the range of 2-8 nm.

Effect of Thermal Conditions on the Cluster Formation of Sulfonated Polystyrene Ionomers

  • Kim, Hee-Seok;Kim, Joon-Seop;Jo, Byung-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.354-358
    • /
    • 1998
  • The effect of thermal conditions on the clustering of sulfonated polystyrene ionomers was investigated. It was found that when the zinc-sulfonated ionomer was dried above a matrix glass transition temperature (Tg), the cluster Tg was observed at ca. 310 ℃, which is ca. 45 ℃ higher than that for the ionomer dried below the matrix Tg. This difference is believed to be the result of the increase in chain mobility at higher temperatures, which improves the multiplet formation and clustering; thus the cluster Tg increases. In the lithium ionomer case, however, the increase in the cluster Tg was ca. 6 ℃ upon annealing. From the results, it was suggested that in the zinc ionomer, the zinc ion is soft and divalent, which results in weaker interactions in multiplets, and thus decreases the stability of the multiplets. Therefore, the thermal effect is more significant for the zinc ionomers than for the lithium ionomers.

Enhanced Crystallization of Bisphenol-A Polycarbonate by Organoclay in the Presence of Sulfonated Polystyrene Ionomers

  • Govindaiah, Patakamuri;Lee, Jung-Min;Lee, Seung-Mo;Kim, Jung-Hyun;Subramani, Sankaraiah
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.842-849
    • /
    • 2009
  • Polycarbonate (PC)/sulfonated polystyrene (SPS) ionomer/organoclay nanocomposites were prepared by a solution intercalation process using the SPS ionomer as a compatibilizer. The effect of an organoclay on the melt crystallization behavior of the ionomer compatibilized PC were examined by differential scanning calorimetry (DSC). The melt crystallization behavior of PC was dependent on the extent of organoclay dispersion. The effect of the ionomer loading and cation size on intercalation/exfoliation efficiency of the organoclay in PC/SPS ionomer matrix was also studied using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Dispersion of the organically modified clay in the polymer matrix improved with increasing ionomer compatibilizer loadings and cation size. The SPS ionomer compatibilized PC/organoclay nanocomposite showed enhanced melt crystallization compared to the SPS ionomer/PC blend. Well dispersed organoclay nanocomposites showed better crystallization than the poorly dispersed clay nanocomposites. These nanocomposites also showed better thermal stability than the SPS ionomer/PC blend.

Sulfonated Polystyrene/PTFE Composite Membranes for Direct Methanol Fuel Cell (직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구)

  • 김정훈;신정필;박인준;이수복;서동학
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.173-184
    • /
    • 2004
  • For the application of direct methanol fuel cell (DMFC), sulfonated polystyrene/teflon (PS/PTFE) composite membranes were developed by changing monomer ratio of styrene and DVB. The composite membranes were prepared as follows: first, the monomer mixtures consisting of styrene, divinyl benzene and AIBN were impregnated in porous PTFE film and then, polymerized under 8$0^{\circ}C$ to give PS/PTFE membranes. Finally, the membranes were reacted with chlorosulfonic acid in 1,2-dichloroethane to give the sulfonated composite membranes. The measurements of ATR-FTIR, SEM, solvent uptake test and ion exchange capacity (IEC) were done for the resulting membranes before or after sulfonation, respectively, which showed the composite membranes with proper crosslinking degree and sulfonic acid content were prepared well as a function of styrene/DVB ratio. ion conductivity and methanol permeability were studied for the sulfonated membranes. It was found that with decreasing the ratio of styrene/DVB, methanol permeability decreased from $6.6{\times}10^{-7}∼1.3{\timas}10^{-7}$ $\textrm{cm}^2$/s, which are much lower values than that of Nafion$^{(R)}$117($1.02{\times}10^{-6}$ $\textrm{cm}^2$/s). Under the same monomer condition, ion conductivity decreased from 0.11 S/cm ($25^{\circ}C$) to 0.08 S/cm ($25^{\circ}C$), which are similar or a little higher values compared with $Nafion^{(R)}117 (1.02{\times}10^{-6}$ $\textrm{cm}^2$/s, 0.0824 S/cm). These two results confirmed the composite membranes prepared could be applied successfully to DMFC.C.

Preparation and Characteristics of Sulfonated HIPS ion Exchange Nanofiber by Electrospinning (전기방사에 의한 술폰화 HIPS 이온교환 나노섬유의 제조 및 특성)

  • Choi, Eun-Jung;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • In this study, it was prepared for nanofiber with high impact polystyrene(HIPS). HIPS is able to crosslinking after electrospinning with crosslinking agent and it could overcome brittle characteristics of polystyrene(PS). After thermal crosslinking, HIPS nanofiber was sulfonated by sulfuric acid. It was investigated FT-IR, XPS, water uptake, ion exchange capacity(IEC), SEM, and contact angle. According to the result of FT-IR and XPS, it was increased due to introduce the hydrophilic group($SO_3H$) in the HIPS nanofiber. The highest water uptake and IEC were 75.6%, 2.67 meq/ g at 120 min sulfonation time with 7.5 wt% DVB.

Semi-interpenetrated Polymer Network of Sulfonated Poly(Styrene-Divinylbenzene-Acrylonitrile) based on PVC Film for Polymer Electrolyte Membranes

  • Yun, Sung-Hyun;Woo, Jung-Je;Seo, Seok-Jun;Park, Jung-Woo;Oh, Se-Hun;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • The sulfonated poly(styrene-divinylbenzene-acrylonitrile) (ST-DVB-AN) composite polymer electrolyte membrane based on the original PVC film was successfully synthesized to improve oxidative stability using semi-interpenetrated polymer network (semi-IPN). Weight gain ratio after copolymerization was enhanced by the DVB and AN contents, and the sulfonated membranes were characterized in terms of proton conductivity (k), ion exchange capacity (IEC), and water uptake ($W_U$). The effect of DVB content and AN addition were thoroughly investigated by comparing the resulted properties including oxidative stability. The obtained ST-DVB-AN composited semi-IPN membranes showed relatively high proton conductivity and IEC compared with Nafion117, and greatly improved oxidative stability of the synthesized membrane was obtained. This study demonstrated that a semi-interpenetrated sulfonated ST-DVB-AN composited membrane reinforced by PVC polymer network is a promising candidate as an inexpensive polymer electrolyte membrane for fuel cell applications.