• 제목/요약/키워드: sulfonamide groups

검색결과 12건 처리시간 0.019초

제초성 Benzenesulfonyl urea계 화합물의 형태와 반응성 (Conformation and Reactivity of Herbicidal Benzenesulfonyl urea Compounds)

  • 유성재;이상호;고영관;성낙도
    • Applied Biological Chemistry
    • /
    • 제39권3호
    • /
    • pp.235-240
    • /
    • 1996
  • 제초성 비치환(H) benzenesulfonyl urea 분자, 1은 sulfonyl group 인접의 amino group과 pyrimidinyl group의 N원자 사이에 회합(H-결합)된 형태(II-keto)가 제일 안정하였으며 phenyl 치환$(R_2$$R_3)$유도체, 2는 전자를 밀수록$(\sigma<0)$ LUMO(ev.)는 음의 값으로 증가하여 물 분자의 HOMO(ev.)사이에 궤도 조절반응(p<0)에따른 전형적인 친핵 반응성을 나타낸다. N-(4,6-이치환-pyrimidine-2-yl)aminocarbonyl-2-(1,1-dimethoxy-2-fluoro)ethylbenzenesulfonamides, 3 및 N-(4,6-이치환-triazine-2-yl)aminocarbonyl-2-(1,1-dimethoxy-2-리uoro)ethylbenzenesulfonamide, 4 유도체의 4,6-이치환기(X 및 Y) 와 헤테로 고리의 변화에 따른 올챙이고랭이(Scirpus juncodies.) 에 대한 제초활성은 소수성$((log\;P)_{opt.}=0.89)$이 가장 큰 영향을 미치는 요인이었다. 또한, pyrimidine-치환체, 3이 triazine-치환체, 4보다 양호한 제초활성을 나타내었으며 dimethoxypyrimidine-치환체, 3a가 가장 큰 제초활성을 보였다.

  • PDF

사람 및 가축 유래 분변 미생물 군집과 항생제 내성 유전자 간 상관 관계에 대한 연구 (Co-occurrence Analyses of Antibiotic Resistance Genes and Microbial Community in Human and Livestock Animal Feces)

  • 정지원;반다리 아프라지타;운노 타쯔야
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.335-343
    • /
    • 2022
  • BACKGROUND: Antibiotics used in animal husbandry for disease prevention and treatment have resulted in the rapid progression of antibiotic resistant bacteria which can be introduced into the environment through livestock feces/manure, disseminating antibiotic resistant genes (ARGs). In this study, fecal samples were collected from the livestock farms located in Jeju Island to investigate the relationship between microbial communities and ARGs. METHODS AND RESULTS: Illumina MiSeq sequencing was applied to characterize microbial communities within each fecal sample. Using quantitative PCR (qPCR), ten ARGs encoding tetracycline resistance (tetB, tetM), sulfonamide resistance (sul1, sul2), fluoroquinolone resistance (qnrD, qnrS), fluoroquinolone and aminoglycoside resistance (aac(6')-Ib), beta-lactam resistance (blaTEM, blaCTX-M), macrolide resistance (ermC), a class 1 integronsintegrase gene (intI1), and a class 2 integrons-integrase gene (intI2) were quantified. The results showed that Firmicutes and Bacteroidetes were dominant in human, cow, horse, and pig groups, while Firmicutes and Actinobacteria were dominant in chicken group. Among ARGs, tetM was detected with the highest number of copies, followed by sul1 and sul2. Most of the genera belonging to Firmicutes showed positive correlations with ARGs and integron genes. There were 97, 34, 31, 25, and 22 genera in chicken, cow, pig, human, and horse respectively which showed positive correlations with ARGs and integron genes. In network analysis, we identified diversity of microbial communities which correlated with ARGs and integron genes. CONCLUSION(S): In this study, antibiotic resistance patterns in human and livestock fecal samples were identified. The abundance of ARGs and integron genes detected in the samples were associated with the amount of antibiotics commonly used for human and livestocks. We found diverse microbial communities associated with antibiotics resistance genes in different hosts, suggesting that antibiotics resistance can disseminate across environments through various routes. Identifying the routes of ARG dissemination in the environment would be the first step to overcome the challenge of antibiotic resistance in the future.