• 제목/요약/키워드: sulfides

검색결과 285건 처리시간 0.023초

동원광산의 금-은 광화작용 (Gold and Silver Mineralization in the Dongweon Mine)

  • 박희인;박영록
    • 자원환경지질
    • /
    • 제23권2호
    • /
    • pp.183-199
    • /
    • 1990
  • Ore deposits of Dongwon mine are composed of numerous gold and silver veins emplaced in sedimentary rocks of Cambrian Choseon Supergroup and granitoids of Cretaceous age. Ore veins of the mine can be divided into gold and silver veins on the base of vein structure, mineral assemblage and vein trends. Mutual relationships between gold and silver veins are uncertain. Gold veins are simple veins which are composed of base-metal sulfides, and electrum with quartz and ankerite. On the other hand, silver veins are complex veins which reveal three distinct stages of mineral deposition based on vein structure; stage I, deposition of small amounts of oxides and pyrite with quartz; stage II, deposition of base-metal sulfides, small amounts of Ag-bearing minerals, calcite and quartz; stage III, deposition of base metal sulfides, electrum, Ag-sulfosalts, native silver, carbonates and quartz. Homogenization temperature and salinity of fluid inclusion from quartz of gold vein are as follows; $229^{\circ}$ to $283^{\circ}C$, 4.7 to 6.4 wt.% equivalent NaCI. The ore mineralogy suggests that temperature(T) and sulfur fugacity($fs_2$) of the formation of the gold vein and stage III of silver vein are estimated as T ; $294^{\circ}$ to $318^{\circ}C$, $fs_2\;10^{-9.4}$ to $10^{-10.1}$ atm. and T; $240^{\circ}$ to $279^{\circ}C$, $fs_2;10^{-11.1}$ to $10^{-17.3}$ atm. respectively. Pressure condition during gold vein formation estimated from data of ore mineralogy and fluid inclusion range 500 to 750 bar.

  • PDF

철암은광상(鐵岩銀鑛床)의 광석(鑛石)과 유체포유물(流體包有物) (Silver Ores and Fluid Inclusions of the Cheolam Silver Deposits)

  • 박희인;우영균;배영부
    • 자원환경지질
    • /
    • 제20권1호
    • /
    • pp.1-18
    • /
    • 1987
  • The Cheolam silver deposits are emplaced along the fractures in breccia dike and the Hongjesa granite. Breccia dike contains fragments of late Cretaceous acidic volcanic rocks and other fragments of various rocks distributed in the mine area. Therefore it is presumed that the mineralization was taken place in later than late Cretaceous time. Mineral paragenesis is complicated by multiple episodes of fracturing. Six distinct depositional stages can be recognized: stage I, deposition of base metal sulfides; stage II, deposition of base metal sulfides and silver minerals; stage III, deposition of carbonates; stage IV, deposition of silver minerals and base metal sulfides; stage V, deposition of silver minerals; stage VI, deposition of barren quartz. Silver minerals from the deposits are native silver, acanthite, pyrargyrite, argentian tetrahedrite, stephanite, polybasite, pearceite, allargentum, antimonial silver and electrum. Fluid inclusion studies ware carried out for stage I, II, IV and VI quartz and stage III calcite. Homogenization temperatures for each stage are as follows: stage I, from $225^{\circ}$ to $360^{\circ}C$; stage II, from $145^{\circ}$ to $220^{\circ}C$; stage III, from $175^{\circ}$ to $240^{\circ}C$; stage IV, from $130^{\circ}$ to $185^{\circ}C$; stage VI, from $120^{\circ}$ to $145^{\circ}C$. Salinities of ore fluids were in the range of 4 and 10 wt.% equivalent NaCl over stage I and stage VI. Ore mineralogical data of each stage indicate that temperatures are within the range of homogenization temperature of fluid inclusions and sulfur fugacities declined steadily from $10^{-9.7}atm$. to $10^{-18.7}atm$. through stage I into stage V.

  • PDF

향상된 에너지 저장 능력을 가진 이중 전이금속 황화물 계층적 중공 구조의 나노구 (Binary transition metal sulfides hierarchical multi-shelled hollow nanospheres with enhanced energy storage performance)

  • 이영훈;최형욱;김민섭;정동인;;강봉균;윤대호
    • 한국결정성장학회지
    • /
    • 제28권3호
    • /
    • pp.112-117
    • /
    • 2018
  • 금속 알콕사이드인 CuCo-glycerate 나노구의 용매열합성 과정을 통해 단분산된 Cu-Co 이중 금속 황화물 계층적 중공 구조의 나노구($CuCo_2S_4$ HMHNSs)를 합성하는데 성공하였다. 이 반응 메커니즘에서 용매열합성 온도와 보조 계면활성제인 glycerol의 양은 CuCo-glycerate 나노구의 형태를 최적화하는데 중요한 역할을 한다. 또한 $CuCo_2S_4$ HMHNSs는 glycerate와 황 이온 간의 음이온 교환 반응을 통해 10시간의 최적화된 황화 반응 조건하에서 성공적으로 합성되었다. 최종적으로 합성된 물질의 구조적, 화학적 특성은 SEM, TEM, XRD와 전기화학적 특성 평가에 의해 확인되었다.

무극광산(無極鑛山) 삼형제맥(三兄弟脈)의 금은광화작용(金銀鑛化作用) (Gold and Silver Mineralization of Samhyungje Vein, the Mugeug Mine)

  • 박희인;강성준
    • 자원환경지질
    • /
    • 제21권3호
    • /
    • pp.257-268
    • /
    • 1988
  • The Mugeug gold deposits is consisted of more than fourteen gold and silver-bearing quartz veins emplaced in Mesozoic granodiorite mass. In the Samhyungje vein, one of the representative vein in the mine, six stages of mineralizatidns are recognized: Stage I, deposition of base-metal sulfides and gray quartz; stage II, deposition of base-metal sulfides, electrum and white quartz with pinkish tint; stage m, deposition of base-metal sulfides and dark gray quartz; stage N, deposition of native silver, argentite, Ag-tetrahedrite, polybasite, arsenpolybasite and quartz; stage V, deposition of nearly barren quartz; stage VI, deposition of transparent quartz veinlets with minor pyrite. Ag contents of electrum increase steadily from stage II to stage N; 57.25-61.44 atom. % for stage II, 62.85-69.66 atom. % for stage m, 69.79-74.12 atom. % for stage N. Homogenization temperatures of fluid inclusions are as follows; stage II, from $194^{\circ}$ to $287^{\circ}C$; stage V, from $137^{\circ}$ to $171^{\circ}C$, stage VI, from $192^{\circ}$ to $232^{\circ}C$. Salinities of fluid inclusions range from 3.7 to 7.9 wt.% equivalent NaCl in stage II and from 0.8 to 4.3 wt.% equivalent Nael in stage V. Ore mineralogy suggest that temperature and sulfur fugacity declined steadily from $290^{\circ}$ to $150^{\circ}C$ and from $10^{-10.5}$ to $10^{-19.0}$atm. through stage II into stage N. Fluid pressure during stage II inferred from data of mineral assemblages and fluid inclusions is 370bar.

  • PDF

석출강화형 극저탄소강의 특성에 대한 고찰 (Characteristics of Precipitation Hardened Extra Low Carbon Steels)

  • 윤정봉;김성일;김인배
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).

한국이 탐사 중인 해저광물자원의 희유금속 함량과 의미 (Rare Metal Contents and Their Implications of Seabed Mineral Resources Explored by Korea)

  • 박상준;문재운;이경용;지상범
    • 자원환경지질
    • /
    • 제43권5호
    • /
    • pp.455-466
    • /
    • 2010
  • 한국이 현재 탐사하고 있는 해저광물자원의 유형은 망간단괴, 망간각, 다금속황화광체 등으로 구분된다. 망간단괴에 함유되어 있는 주요 희소금속은 Pt로 지각함량 대비 최대 400 배까지 부화되어 있다. 망간단괴의 총 희토류 함량은 0.037~0.302 REO %, 평균 0.12 REO %를 보인다. 망간각의 주요 희소금속은 Te 및 Pt로 각각 10800 배, 150배 정도의 부화량을 보인다. 총 희토류 함량은 0.013-0.387 REO %, 평균 0.18 REO %로 망간단괴 보다 다소 높은 함량을 보인다. 다금속화황광체의 주요 희소금속은 Se 및 In으로 각각 1300 배, 110 배의 높은 부화량을 보이며, 금(0.8~26.3 g/t), 은(0.9~348.0 g/t) 등의 귀금속이 함유된다. 해저광물자원에 함유되어 있는 희유금속은 채광 예상 금속 종인 Co, Ni, Cu 등의 채광 경제성을 높여 줄 것으로 생각되며 첨단산업을 위한 희유금속 확보 차원에서 의미가 있다.