• Title/Summary/Keyword: sugar production

Search Result 979, Processing Time 0.029 seconds

Production of DagA, a ${\beta}$-Agarase, by Streptomyces lividans in Glucose Medium or Mixed-Sugar Medium Simulating Microalgae Hydrolysate

  • Park, Juyi;Hong, Soon-Kwang;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1622-1628
    • /
    • 2014
  • DagA, a ${\beta}$-agarase, was produced by cultivating a recombinant Streptomyces lividans in a glucose medium or a mixed-sugar medium simulating microalgae hydrolysate. The optimum composition of the glucose medium was identified as 25 g/l glucose, 10 g/l yeast extract, and $5g/l\;MgCl_2{\cdot}6H_2O$. With this, a DagA activity of 7.26 U/ml could be obtained. When a mixed-sugar medium containing 25 g/l of sugars was used, a DagA activity of 4.81 U/ml was obtained with very low substrate utilization efficiency owing to the catabolic repression of glucose against the other sugars. When glucose and galactose were removed from the medium, an unexpectedly high DagA activity of about 8.7 U/ml was obtained, even though a smaller amount of sugars was used. It is recommended for better substrate utilization and process economics that glucose and galactose be eliminated from the medium, by being consumed by some other useful applications, before the production of DagA.

The Optimal Mixing Ratio for Omi-Galsu Concentrate Production (오미갈수(五味渴水) 원액 제조의 최적 배합 비율)

  • Han, Eun-Sook;Rho, Sook-Nyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.29-40
    • /
    • 2008
  • The primary objective of this study was to determine the optimal mixing ratio in preparing Omi-Galsu concentrate. By varying the amounts of Omija extract, mung bean juice, and sugar in the concentrate mixture, we found that pH increased with greater amounts of Omija extract and sugar. According to sensory evaluations, sugar and total free sugar contents were highest when the mixing ratio was 1:1:20%(Omija extract, mung bean juice, and sugar respectively). This ratio also presented the most attractive color and highest overall acceptability.

  • PDF

Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052 (수송용 바이오 부탄올 생산을 위한 미강발효의 최적화)

  • Lee, Ji-Eun;Seo, Eun-Jong;Park, Ki-Moon;Jin, Young-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.235-238
    • /
    • 2008
  • We examined butanol fermentation by Clostridium beijerinckii NCIMB 8052 using various hydrolyzates obtained from rice bran which is one of the most abundant agricultural by-products in Korea and Japan. In order to increase the amount of fermentable sugars in the hydrolyzates of rice bran, various hydrolysis procedures were applied. Total eight different hydrolyzates were prepared using rice bran (RB) and defatted rice bran (DRB) with enzyme or acid treatment and both. Each hydrolyzate was evaluated in terms of total sugar concentration and butanol production after fermentation by C. beijerinckii NCIMB 8052. Acid treatment yielded more sugar than enzyme treatment and combined treatment with enzyme and acid yielded even more sugars as compared to single treatment with enzyme or acid. As a result, the highest sugar concentration (33 g/L) was observed from the hydrolyzate from DRB (100 g/L) with combined treatment using enzyme and acid. Prior to perform fermentation of the hydrolyzates, we examined the effect of P2 solution containing yeast extract, buffer, minerals, and vitamins on production of butanol during the fermentation. Fermentation of the hydrolyzates with or without additionof P2 was performed using C. beijerinckii NCIMB 8052 in a 1 L anaerobic bioreactor. Although the hydrolyzates RB were able to support growth and butanol production, addition of P2 solution into the hydrolyzates significantly improved cell growth and butanol production. Highest butanol production (12.24 g/L) was observed from the hydrolyzate of DRB with acid and enzyme treatment after supplementation of P2 solution.

  • PDF

Fermentation of Rice Bran and Defatted Rice Bran for Butanol Production Using Clostridium beijerinckii NCIMB 8052

  • Lee, Ji-Eun;Seo, Eun-Jong;Kweon, Dae-Hyuk;Park, Ki-Moon;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • We examined butanol fermentation by Clostridium beijerinckii NCIMB 8052 using various hydrolyzates obtained from rice bran, which is one of the most abundant agricultural by-products in Korea and Japan. In order to increase the amount of fermentable sugars in the hydrolyzates of rice bran, various hydrolysis procedures were applied. Eight different hydrolyzates were prepared using rice bran (RB) and defatted rice bran (DRB) with enzyme or acid treatment or both. Each hydrolyzate was evaluated in terms of total sugar concentration and butanol production after fermentation by C. beijerinckii NCIMB 8052. Acid treatment yielded more sugar than enzyme treatment, and combined treatment with enzyme and acid yielded even more sugars as compared with single treatment with enzyme or acid. As a result, the highest sugar concentration (33 g/l) was observed from the hydrolyzate from DRB (100 g/l) with combined treatment using enzyme and acid. Prior to fermentation of the hydrolyzates, we examined the effect of P2 solution containing yeast extract, buffer, minerals, and vitamins on production of butanol during the fermentation. Fermentation of the hydrolyzates with or without addition of P2 was performed using C. beijerinckii NCIMB 8052 in a 1-1 anaerobic bioreactor. Although the RB hydrolyzates were able to support growth and butanol production, addition of P2 solution into the hydrolyzates significantly improved cell growth and butanol production. The highest butanol production (12.24 g/l) was observed from the hydrolyzate of DRB with acid and enzyme treatment after supplementation of P2 solution.

Enzymatic Hydrolysis of Marine Algae Hizikia fusiforme (해조류 톳 (Hizikia fusiforme)의 효소 가수분해)

  • Song, Bu-Bok;Kim, Sung-Koo;Jeong, Gwi-Taek
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.347-351
    • /
    • 2011
  • In this study, we investigated the effect of reaction factors on enzymatic hydrolysis of Hizikia fusiforme, which is brown algae in marine biomass resource, using commercial enzymes. The composition of H. fusiforme is 38.9% of reducing sugar, 4.8% of moisture, 17.8% of ash, and 38.5% of others. In the condition of 1-5% substrate, the increase of substrate concentration enhanced the increase of reducing sugar formation; however, the hydrolysis yield did not increase after 24 h. After reaction of 75 h, conversion yield of reducing sugar were obtained to 16.45%, 17.99%, and 14.55% at 1, 2.5, and 5% substrate, respectively. As a result of effect of enzyme amount, the formation of reducing sugar did not show considerable change at 1% substrate. However, in the condition of 2.5% substrate, the great change of reducing sugar formation was observed by the increase of enzyme amount. The conversion yields of reducing sugar were obtained to 18.77% and 22.83% at 1% and 2.5% substrate with 30% enzyme, respectively. As a result of heat treatment of biomass, the high yield was obtained in 2.5% substrate and the yields were increased to 0.06-7.2% by the heat treatment. This result will provide the basic information for production process of biofuels and chemicals from marine biomass H. fusiforme.

The Effects of Sugar Addition in Yogurt Prepared from Egg White Powder and Casein (난백분말과 카제인으로 만든 요구르트에서 당의 첨가 효과)

  • 고영태;이주원
    • Korean journal of food and cookery science
    • /
    • v.12 no.2
    • /
    • pp.153-161
    • /
    • 1996
  • A curd yogurt was prepared from egg white powder (EWP) and casein added with sugars (glucose, fructose, lactose). The effects of sugar addition on acid production and growth of Lactobacillus were studied. The effects of sugar addition on sensory property and volatile aroma compounds were also studied. Acid production by L. acidophilus in EWP 2% (W/V), casein 3% (w/v) and sugar 0.5,1 or 2% W/V) was lower than that of L. acidophilus in milk (control). Acid production in sample added with glucose or fructose of 1% or 2% (W/V) was higher than that of 0.5% (W/V), while acid production in lactose added sample was not affected with the concentration of lactose. Number of viable cells of L. acidophilus at 24 hr in milk, glucose added sample, fructose added sample and lactose added sample was 3.6${\times}$10/Sup 9/, 5.6${\times}$10$\^$8/, 6.0${\times}$10$\^$8/,and 3.2${\times}$10$\^$7/, respectively. Through 30hr fermentation, acid production and number of viable cells of L. acidophilus in milk were higher than those of sugar added samples. Sensory property of fructose added sample was slightly better than that of milk yogurt (reference), while that of lactose added sample was significantly inferior. Though the composition of volatile aroma compounds was slightly different according to sample, gas chromatographic analysis detected acetone, ethanol, diacetyl and acetoin in samples fermented by L. acidophilus.

  • PDF

Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts

  • Cho, Hyeyoung;Ra, Chae-Hun;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.264-269
    • /
    • 2014
  • For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

Production and Property of Maltooligosaccharide by Bacillus cereus LAM 1072 with Response Surface Methodology (반응표면분석에 의한 Bacillus cereus IAM 1072의 말토올리고당 생산 및 특성)

  • 이명열;강태수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.639-647
    • /
    • 1998
  • This study was carried out to produce the maltooligosaccharides directly from the culture medium containing high concentration of soluble starch as carbohydrate source by Bacillus cereus IAM 1072. Optimum conditions for the production of maltopentaose and maltooligosaccharides were predicted as 10.62 and 10.92 in C/N ration, 115.74 and 116.51 rpm in agitation speed, 30.19 and 30.9$0^{\circ}C$, respectively. And at these conditions, products of maltopentaose and maltooligosaccharides were 23.23 and 50.33g/L, respectively. From the results of continuous culture for maltopentaose, the productivity increased up to 6.9 times, showing 6.6g/L/hr compared with 0.96g/L/hr batch culture. Maltopentaose showed lower sweetness at 3% concentration representing 1/5 of that sugar. Also, swelling power of maltooligosaccharides was reached to the same point with sugar after fermentation.

  • PDF

Comparisons of the Physicochemical Characteristics of Korean Traditional Soy Sauce with Varying Soybean Seeding Periods and Regions of Production (원료콩의 파종시기와 산지에 따른 재래식 간장의 품질 특성 비교)

  • Kang, Sun-Hee;Lee, Seul;Ko, Jong-Min;Hwang, In-Kyeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.761-769
    • /
    • 2011
  • The objective of this study was to investigate the physicochemical properties of Korean traditional soy sauces made with soybeans sown in different producing regions(Hadong, Paju) and in different seeding periods(late-May, mid-June, late-June). The total acidity, salt content, chromaticity, browning, amino nitrogen content and the reducing sugar content of the soy sauce samples were compared. It was found that the total acidity level and the amino nitrogen contents were significantly lower in the soy sauce made with mid-June soybeans, and that these properties increased as the sauce aged. Salt content increased with the aging period regardless of the region of production. The reducing sugar content of Paju soy sauce was the highest in late -June, and for the Hadong region, highest in late-May. The sauce made with Hadong soy beans showed an increase in reducing sugar content positively correlated with the aging period. Reducing sugar content in the samples of Paju soy sauce decreased up to 60 days of aging, but increased after this point. In Paju soy sauce, the brightness(L value) was significantly higher in mid-June, and the Hadong variant it was higher in late -May. The yellowness(b value) at the beginning of the aging process was high in late -June for Hadong soy sauce, but overall it was higher in the mid-June period. The more matured soy sauce samples were darker and showed both higher a and b values. The browning was the lowest in the mid -June regardless of the regions and it increased with the aging period regardless of the production regions. The salt, amino nitrogen contents, browning and yellowness showed significant correlations among the samples. In conclusion, the seeding period of soy beans may affect the characteristics of produced soy sauce alongside the aging conditions.

Effects of Bambusae Caulis in Liquamen from Different Production Process on the Blood Sugar of the mice induced with Streptozotocin (생산공법 차이에 따른 죽력이 Streptozotocin으로 유발된 당뇨 생쥐에 미치는 영향)

  • Jang Kyeong Seon;Oh Young Joon;Choi Chan Hun;Jean Yong Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1253-1259
    • /
    • 2002
  • This study was carried out to investigate the effects of Bambusae Caulis in Liquamen from different production process on blood sugar of the diabetic mice induced with Streptozotocin(STZ). The original Bambusae Caulis in Liquamen filtered and refined. Bambusae Caulis in Liquamen D(H-BCL.D) extracted at high temperature(1000℃), Bambusae Caulis in Liquamen A(L-BCL.A) and Bambusae Caulis in Liquamen B(L-BCL.B) extracted at low temperature (250~450℃) were administerd to mice for 4weeks and its anti-diabetic effect examined. Mice used in this experiment were divided into four groups(Control, H-BCL.D, L-BCL.A and L-BCL.B). Experemental groups were observed in terms of blood sugar, Creatinine, BUN and GPT. The amount of glucose was significantly decreased in the Bambusae Caulis in Liquamen-treated groups compared with the control(P < 0.05). The amount of Creatinine did not show any differences among four groups. The amount of Blood Urea Nitrogen did not show any differences in the L-BCL.A and B-treated groups, but did show slightly decrease(P<0.05) at H-BCL.D-treated group. The amount of GPT did not show any differences among four groups. In conclusion, it was found that Bambusae Caulis in Liquamen from extracted at high or low temperature were effective on murine hyperglycemia mice induced with STZ respectively.