• Title/Summary/Keyword: sugar beet

Search Result 69, Processing Time 0.022 seconds

Characteristics of bioethanol production using sweet sorghum juice as a medium of the seed culture (단수수 착즙액이용 배양종균의 바이오에탄올 생산 특성 연구)

  • Cha, Young-Lok;Moon, Youn-Ho;Yu, Gyeong-Dan;Lee, Ji-Eun;Choi, In-Seung;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.627-633
    • /
    • 2016
  • Sweet sorghum [Sorghum bicolor (L)] is one of the major crops for biofuels such as sugarcane and sugar beet which raw materials rich in saccharide. Sweet sorghum juice was extracted from the stem. It's composed of fermentable sugars such as glucose, fructose and sucrose. Ethanol from the extracted sweet sorghum juice can be easily produced by yeast fermentation process. Sweet sorghum juice is consisted of not only sugars but also various nutrients like nitrogen and phosphate. For commercial production of bioethanol, seed culture is one of the important parts of fermentation, so that optimal culture medium should be selected for the reduction of processing costs. In this study, sweet sorghum juice was estimated as a culture medium for seed culture of cellulosic bioethanol. For the comparison of cultures with various substrates, it used YPD including each 5 g/L yeast extract and peptone, sweet sorghum juice and hydrolyzed Miscanthus was taken part in the culture with 2%, 5% and 10% sugar conditions. Based on media of YPD and sweet sorghum juice, cell-mass concentration was obtained maximum more than $2.5{\times}10^8CFU/mL$ after 24 h of cultivation. Consequently sweet sorghum juice is suitable for the cell culture with more than $1.0{\times}10^8CFU/mL$ after 12 h of cultivation. This can be used as a culture medium for the cellulosic bioethanol industry.

PARTIAL REPLACEMENT OF GRASS SILAGE WITH WHOLE-CROP CEREAL SILAGE FOR GROWING BEEF CATTLE

  • Raza, S.H.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.281-287
    • /
    • 1995
  • A study was conducted to investigate the effect of different inclusion levels of urea treated whole-crop wheat silage (UWCWS) in grass silage based rations on the performance of growing beef cattle. The winter wheat (variety, Riband) was harvested (in the summer of 1991) at a dry matter proportion of 520 g/kg and treated with feed grade urea at the rate of 37 kg/tonne crop dry matter and preserved in a heavy duty plastic bag using a silo press. The urea treated whole crop wheat silage (UWCWS) was mixed with grass silage to replace 0.00 (S100), 0.33 (S33) and 0.67 (S67) parts of the forage dry matter and fed ad libitum in a cross over design to 18 Simmental X Holstein Friesian growing beef animals. Two energy sources {one high in starch, rolled barley (RB) and one high in digestible fibre, sugar beet pulp (SBP)} were fed to supply sufficient energy for the efficient use of nitrogen by the rumen micro-organisms. The data on DMIF (dry matter intake of forage), TDMI (total dry matter intake), DLWG (daily live weight gain), FCR (feed conversion ratio) were recorded and faecal samples were collected to determine the digestibility coefficients. Results revealed that with the inclusion of UWCW in the animals' diets the DMI of the forage was significantly increased (p < 0.05). The highest DMIF was found in the treatment "S33" ($6.28{\pm}0.25kg$) where 67% of the silage dry matter was replaced with the UWCW and the lowest value for DMIF was observed in the control treatment ($5.03{\pm}0.23kg$). The DLWG did not differ significantly between the treatments. However, treatment "S100" showed a trend towards a superior DLWG. Feed conversion ratio in the control treatment differed significantly from "S67" and "S33". The addition of the UWCW in the animals' diet resulted in the lower FCR There was no effect of type of energy supplement on any aspect of performance either overall or in interaction with grass silage: UWCWS ratio. The regression and correlation coefficients for DMIF (r = 5.22 + 0.0184x*), DLWG (r = $1.04-0.00086x^{NS}$) and FCR (r = 4.78 = 0.022x*) on the inclusion of UWCW in the diet were calculated. The effect of the inclusion of UWCW on the overall digestibility coefficients was significant (p < 0.05). The addition of the UWCWS in the diet decreased the digestibility of the DM, OM, ADF and NFE but effect on the protein digestibility was non significant. The results of present study suggests that a DLWG slightly over 1 kg can be achieved with UWCW during the store period (period in which animal performance targets are low especially during winter) and the prediction of ME was overestimated as the high intake of DM did not reflect in improved animal performance.

Resistance of Newly Introduced Vegetables to Meloidogyne arenaria and M. incognita in Korea (새로운 채소류의 고구마뿌리혹선충과 땅콩뿌리혹선충에 대한 저항성)

  • Kim, Donggeun;Ryu, Younghyun;Huh, Changseok;Lee, Younsu
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.294-299
    • /
    • 2013
  • To select resistant vegetables against two species of root-knot nematodes, M. incognita and M. arenaria, 39 vegetables belongs to 7 families, 13 genera, 25 species were screened in greenhouse pot test. Susceptible vegetables to both nematodes were amarath and leaf beet in Amaranthaceae, Malabar spinach in Basellaceae, Moroheiya in Tiliaceae, and Water-convolvulus in Convolvulaceae, Pak-choi in Brassica campestris var. chinensis, Tah tasai in B. campestris var. narinosa, B. campestris var. chinensis x narinosa, Leaf mustard, Mustard green in B. juncea, Kyona in B. juncea var. laciniate, Choy sum in B. rapa subsp. arachinenesis, Kairan in B. oleracea var. alboglabra, Arugula in Eruca sativa, Garland chrysanthemum in Chrysanthemum coronarium, Endive in Cichorium endivia, Artichoke in Cynara cardunculus var. scolymus, Lettuce in Lactuca sativa. Resistant to M. arenaria but susceptible to M. incognita were B. oleracea cv. Matjjang kale, B. oleracea var. gongyloides cv. Jeok kohlrabi, and C. intybus cv. Radicchio. Resistant vegetables to both nematodes were C. intybus cv. Sugar loaf, Grumoro, Radichio treviso, B. oleracea cv. Manchu collard, Super matjjang, B. oleracea italica, B. oleracea var. botrytis italiana, and Perilla in Lamiaceae. Vegetables resistant to both species of root-knot nematodes could be used as high-valued rotation crops in greenhouses where root-knot nematodes are problem.

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.

Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs

  • Zhao, Jinbiao;Liu, Xuzhou;Zhang, Yi;Liu, Ling;Wang, Junjun;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1975-1984
    • /
    • 2020
  • Objective: The study was conducted to determine the effects of body weight (BW) and fiber sources on nutrient digestibility, fiber fermentation and short chain fatty acids (SCFA) concentration in different intestinal segments of growing pigs fed high-fiber diets. Methods: Nine barrows with initial BW of 25.17±0.73 kg and 9 barrows with initial BW of 63.47±2.18 kg were allotted to a duplicate 9×2 Youden Square design with 3 dietary treatments and 2 periods. The dietary treatments were formulated with 3 different high-fiber ingredients: corn bran, sugar beet pulp, and soybean hulls, respectively. Each diet was fed to 3 barrows with different stage of BW in each period. Results: There were no differences in the apparent ileal digestibility (AID) of most nutrients between pigs at different BW stages. Pigs at 60 kg had greater (p<0.05) apparent total tract digestibility (ATTD) of total dietary fiber (TDF), soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), and had greater (p<0.05) hindgut disappearance of IDF and cellulose than pigs at 25 kg. The acetate, propionate and total SCFA concentrations in ileal digesta and feces of pigs at 60 kg were greater (p<0.05) than those of pigs at 25 kg. In addition, fiber sources affected (p<0.05) the AID of gross energy (GE), organic matter (OM), ether extract (EE), crude protein, SDF and hemicellulose, the hindgut disappearance and ATTD of dietary fiber components, the lactate and propionate concentrations in ileal digesta and the butyrate, valerate and total SCFA concentrations in feces. There were interactions (p<0.05) between BW and fiber sources on the AID of GE, OM, EE, SDF, hemicellulose, the ATTD of EE, TDF, and IDF, and the hindgut disappearance of SDF and hemicellulose. Conclusion: Increasing BW mainly improved the digestibility of dietary fiber fractions, and the dietary fiber sources influenced the digestibility of almost all the dietary nutrients in growing pigs.

Safety evaluation and approval status of genetically modified foods in Korea (국내 유전자변형식품 안전성 심사 규정 및 승인현황)

  • Kang, Yun-Sook
    • Food Science and Industry
    • /
    • v.52 no.2
    • /
    • pp.130-139
    • /
    • 2019
  • Safety of genetically modified foods (GM foods) in Korea is evaluated according to "Food Sanitation Act" and "Regulation on safety evaluation for GM foods" based on the concept of substantial equivalence. In which cases a person who imports, develops or manufactures GM foods for the purpose of eating imports GM foods for the first time, he/she shall undergo a safety evaluation of the relevant foods, etc. by Ministry of Food and Drug Safety (MFDS). And in which cases ten years have elapsed since GM foods underwent safety evaluation, they shall be re-evaluated for their safety. As of April 2019, a total of 199 events have been approved by MFDS and they are 169 events of GM crops including soybean (29), maize (87), cotton (29), canola (14), sugar beet (1), potato (4), alfalfa (5), 6 events of GM microorganisms (GMM) and 24 events of GM food additives originated from GMM.

Cellulosic Ethanol Production (셀룰로식 (Cellulosic) 에탄올 생산)

  • Chung, Chang-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • The world demand of ethanol as an alternative fuel for gasoline is increasing rapidly because of high oil price and global climate change. Most of ethanol is currently produced from corn grain or sugars in sugarcane and sugar beet. Because these sources compete with foods and animal feed and are not expected to be enough for future demand of ethanol. Thus, cellulosic ethanol from agricultural residues or wood has to be commercialized in near future. Typical cellulosic ethanol production consists of pretreatment, enzyme hydrolysis, fermentation and product separation. This paper reviews the principles and status of each step and discusses issues for cellulosic ethanol production.

NIRS AS AN ESSENTIAL TOOL IN FOOD SAFETY PROGRAMS: FEED INGREDIENTS PREDICTION H COMMERCIAL COMPOUND FEEDING STUFFS

  • Varo, Ana-Garrido;MariaDoloresPerezMarin;Cabrera, Augusto-Gomez;JoseEmilioGuerrero Ginel;FelixdePaz;NatividadDelgado
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1153-1153
    • /
    • 2001
  • Directive 79/373/EEC on the marketing of compound feeding stuffs, provided far a flexible declaration arrangement confined to the indication of the feed materials without stating their quantity and the possibility was retained to declare categories of feed materials instead of declaring the feed materials themselves. However, the BSE (Bovine Spongiform Encephalopathy) and the dioxin crisis have demonstrated the inadequacy of the current provisions and the need of detailed qualitative and quantitative information. On 10 January 2000 the Commission submitted to the Council a proposal for a Directive related to the marketing of compound feeding stuffs and the Council adopted a Common Position (EC N$^{\circ}$/2001) published at the Official Journal of the European Communities of 2. 2. 2001. According to the EC (EC N$^{\circ}$ 6/2001) the feeds material contained in compound feeding stufs intended for animals other than pets must be declared according to their percentage by weight, by descending order of weight and within the following brackets (I :< 30%; II :> 15 to 30%; III :> 5 to 15%; IV : 2% to 5%; V: < 2%). For practical reasons, it shall be allowed that the declarations of feed materials included in the compound feeding stuffs are provided on an ad hoc label or accompanying document. However, documents alone will not be sufficient to restore public confidence on the animal feed industry. The objective of the present work is to obtain calibration equations fur the instanteneous and simultaneous prediction of the chemical composition and the percentage of ingredients of unground compound feeding stuffs. A total of 287 samples of unground compound feeds marketed in Spain were scanned in a FOSS-NIR Systems 6500 monochromator using a rectangular cup with a quartz window (16 $\times$ 3.5 cm). Calibration equations were obtained for the prediction of moisture ($R^2$= 0.84, SECV = 0.54), crude protein ($R^2$= 0.96, SECV = 0.75), fat ($R^2$= 0.86, SECV = 0.54), crude fiber ($R^2$= 0.97, SECV = 0.63) and ashes ($R^2$= 0.86, SECV = 0.83). The sane set of spectroscopic data was used to predict the ingredient composition of the compound feeds. The preliminary results show that NIRS has an excellent ability ($r^2$$\geq$ 0, 9; RPD $\geq$ 3) for the prediction of the percentage of inclusion of alfalfa, sunflower meal, gluten meal, sugar beet pulp, palm meal, poultry meal, total meat meal (meat and bone meal and poultry meal) and whey. Other equations with a good predictive performance ($R^2$$\geq$0, 7; 2$\leq$RPD$\leq$3) were the obtained for the prediction of soya bean meal, corn, molasses, animal fat and lupin meal. The equations obtained for the prediction of other constituents (barley, bran, rice, manioc, meat and bone meal, fish meal, calcium carbonate, ammonium clorure and salt have an accuracy enough to fulfill the requirements layed down by the Common Position (EC Nº 6/2001). NIRS technology should be considered as an essential tool in food Safety Programs.

  • PDF

Spread of Cyst Nematodes in Highland Chinese Cabbage Field in Gangwon-do (강원도 고랭지배추 재배지에서 씨스트선충의 분포 확산)

  • Kwon, Soon-Bae;Park, Dong-Kwon;Won, Heon-Seop;Moon, Youn-Gi;Lee, Jae-Hong;Kim, Yong-Bog;Choi, Byoung-Gon;Seo, Hyun-Taek;Ko, Hyoung-Rai;Lee, Jae-Kook;Lee, Dong Woon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.339-345
    • /
    • 2018
  • The sugar beet cyst nematode (SBCN), Heterodera schachtii first detected in Taebaek, Gangwon-do in 2011, is one of the major plant parasitic nematodes that cause economic damage to the Chinese cabbage in highland regions. In addition, the distribution of clover cyst nematode (CCN), H. trifolii was confirmed in the highland Chinese cabbage cultivated regions in 2017. In order to investigate the spread of cyst nematodes, this study has been conducted since 2013 in the highland Chinese cabbage cultivation area. In addition, in 2017, the Real-Time PCR technique with the species-specific primer was used to investigate those two cyst nematodes and the soybean cyst nematode (SCN), H. glycines which is known for its distribution in Korea, focusing on the main production regions of highland Chinese cabbage cultivation. The number of infected fields in the Chinese cabbage plantation in highland increased every year to confirm distribution in Taebaek, Samcheok, Jeongseon and Gangneung in 2017, and the cumulative number of infection fields reached 245 by 2017. Of the 41 possible cyst nematode samples for PCR analysis, 61% were CCN, only 9.8% of the SBCN and 29.3% of the SCN were identified. Therefore, some of the previously known SBCN or CCN discoveries are likely to have been infected with SCN. It is believed that the CCN needs to be controlled in the future as CCN have been found to be dominant species in the highland Chinese cabbage plantation regions.