• Title/Summary/Keyword: subway induced vibration

Search Result 38, Processing Time 0.024 seconds

A Comparison between Measurement Values and Prediction Values for the Decision of Applicability of Vibration Prediction Equations (지하철진동 예측식의 사용성 판단을 위한 실측값과 예측값의 비교)

  • Huh, Y.;Yi, S.S.;Kim, H.C.;Shin, H.C.;Yi, I.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.80-85
    • /
    • 1996
  • Predictions of vibration induced by subway operation has been studied through comparison between the measurement values and the estimated values which proposed by other scientists to determine the adequacy of each equation. It was found from this study that the Wilson's prediction equation gives the best overall approximation value although the peak frequency band lies somewhat higher than that obtained from measurement.

  • PDF

Study on the Prediction of Ground-borne Vibration Induced by Subway (지하철에 의한 지반진동 예측에 관한 연구)

  • 장서일;김득성;이재원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 2004
  • Ground-borne noise and vibration generated by underground transit system has been recognized as an important environmental problem. This study reviews several of the procedures that have been used to predict ground-borne vibration. The vibration responses are measured at three sites that have different soil qualities. The measured vibration levels are compared with the predicted results by previously used vibration level prediction models. There are some drawbacks to apply these prediction models to selected sites because most of the existing prediction models are primarily based on empirical data and all of them lack of analytical models for the mechanism of ground-borne vibration generation. radiation, and propagation. In this study a numerical method, which is based on explicit differential method, is used to compensate for the shortcomings of existing prediction models. Although numerically computed results are not quantitatively in good agreement with the measured results, the trends are comparable in the sense that vibration level does not decrease monotonically with distance. Also, the site with the deepest tunnel gives the highest vibration level.

A Study on the Vibration Characteristics of Subway Structure by Train Load (열차 하중에 의한 지하철 구조물의 진동 특성에 관한 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • In this study, the vibration analysis of the underground box structures induced train movement is studied. In order to perform these analysis, dynamic data, which was measured when subway is in service, are gained by attaching accelerometers on the structure such as lower beam, lateral wall and upper slab. Also, accelerometers are attached on the lower beams and side walls of the gravel ballast and concrete ballast sections in order to compare vibration due to ballast materials. The vibration results of upper slabs and lower beams reveal that the vibration on the upper slabs is greater than the lower beams. Also, the results of the crack gauge on the upper slab show that crack width dose not change due to vibration, These means that the effect of the vibration on the structure is very limited. In order to evaluate the vibration of the structure, acceleration unit is converted to velocity unit comparing with the existing velocity data gained from the platforms.

A Fundamental Study on Analysis of Electromotive Force and Updating of Vibration Power Generating Model on Subway Through The Bayesian Regression and Correlation Analysis (베이지안 회귀 및 상관분석을 통한 지하철 진동발전 모델의 수정과 기전력 분석)

  • Jo, Byung-Wan;Kim, Young-Seok;Kim, Yun-Sung;Kim, Yun-Gi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • This study is to update of vibration power generating model and to analyze electromotive force on subway. Analysis of electromotive force using power generation depending on classification of locations which are ballast bed and concrete bed. As the section between Seocho and Bangbae in the line 2 subway was changed from ballast bed to concrete bed, it could be analyzed at same condition, train, section. Induced electromotive force equation by Faraday's law was updated using Bayesian regression and correlation analysis with calculate value and experiment value. Using the updated model, it could get 40mV per one power generation in ballast bed, and it also could get 4mV per one power generation in concrete bed. If the updated model apply to subway or any train, it will be more effective to get electric power. In addition to that, it will be good to reduce greenhouse gas and to build a green traffic network.

Stress estimation of exposed gas pipeline using MEMS wireless tilt sensor (MEMS 무선 기울기 센서를 이용한 노출 배관 응력 추정)

  • Kim, Tack-Keun;Kang, In-Goo;Shin, Dong-Hoon;Chung, Tae-Yong;Nam, Jin-Hyun;Lim, Si-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.404-408
    • /
    • 2009
  • Gas pipelines in bridges, roads and subway construction sections can undergo abrupt stress and vibration changes. To protect human life from any gas leakage accidents induced by the abrupt stress and vibration, the gas pipeline system needs to be continuously monitored. The estimation method of pipeline stress using MEMS wireless tilt sensor has been developed and its validity has been evaluated using a lab test bench.

  • PDF

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Evaluation of the blast-restriction zone to secure tunnel lining safety (터널라이닝 안전관리를 위한 발파제한영역 평가)

  • Shin, Jong-Ho;Moon, Hoon-Ki;Choi, Kyu-Cheol;Kim, Tae-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 2009
  • In urban areas, blast excavation adjacent to tunnels is carried out frequently. It is generally required to secure static and dynamic stability of nearby tunnel structures for any such activities. Although there is some national guidelines for static safety, there is little guides to risk zoning controling the dynamic behavior of the underground structures. In this study, impacts on the blast-induced vibration are investigated using numerical study. An attempt to define the restricted area of blast adjacent to subway tunnels was also made. Particular concerns were given to tunnel depth and ground types. By carrying out the parametric study on depth and ground patterns, the envelope of blast distance of which dynamic response on the lining is controlled under 1 cm/sec, is established. It is shown that the increase in depth has increased the required safety distance slightly until the distance of 3.5 times of the tunnel diameter. Despite small changes in safety distance, it can be generally said that the effects of depth and stiffness of the ground is not significant in controlling the particle velocity of the tunnel linings.

A study on Measurement of Blast-Induced Ground Vibrations in Urban Areas (도심지(都心地) 발파(發破)에서의 지반진동(地盤振動) 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Woong-Soo;Lee, Kyoung-Woon;Lim, Han-Uk;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.17-26
    • /
    • 1983
  • The blast vibrations were measured from 10 places through Seoul subway area to study their effects on the structures and to establish the safe blasting limits. For purpose of the present study, particle velocity only was recorded and analyzed, because it correlated most directly with damage. The results are as follows: (1) The proagation equation, $V=K(D/W^{1/3})^{-n}$ was obtained. Typical values could be found for n range from 1.7 to 1.5 and for k range from 48 to 138. (2) From the relationship between schmidt hammer rebound hardness and uniaxial compressive strength, $Sc=0.514{\times}(S.H)^{0.23}$, the compressive strength at any area can be assumed. (3) The use of AN-FO and other explosives with low detonation pressure may reduce vibration levels generated.

  • PDF