• Title/Summary/Keyword: subsurface information system

Search Result 77, Processing Time 0.03 seconds

Development of a Subsurface Exploration Analysis System Using a Clustering Technique on Bore-Hole Information (시추공 정보의 클러스터링 기법을 이용한 지반분석시스템의 개발)

  • 이규병;김유성;조우석;김영진
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.301-315
    • /
    • 2000
  • Every, year, a great amount of site investigation data is collected on site to obtain sufficient conditions. Investigation of subsurface conditions is prerequisite to the design and construction of structures and also provides information on ground properties such as geologic formation and types of soil. This data set, which portrays real representation of ground conditions over the existing geologic and soil maps, could be further utilized for analyzing the subsurface conditions. It is therefore necessary to develope a subsurface exploration analysis system which is able to extract the valuable information from the heterogeneous, non-normalized subsurface investigation data. This paper presents the overall design scheme and implementation on a subsurface exploration analysis system. The analysis system employs one of data set such as bore-hole data. The clustering technique employed in the developed system makes a large volume of bore-hole data into several groups in terms of ground formation and geographical vicinity. As a result of clustering, each group or cluster consists of bore-hole data with similar characteristics of subsurface and geographical vicinity. In addition, each clustered data is displayed on digital topographical map with different color so that the analysis of site investigation data could be performed in more sensible ways.

  • PDF

A Case Study of Developing a Subsurface Information and Visualization System Using ArcView (ArcView를 이용한 지하 정보 및 시각화 시스템 구축 사례 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.101-109
    • /
    • 2001
  • In order to develop a spatial information system that can efficiently manage various subsurface data and produce information in a proper form for a user, we established a database of the well cores and built 3-D shapes that visualize the subsurface objects such as wells, ore bodies, tunnels, and mine cavities. We also made analysis tools available for three-dimensional ore bodies constructed here, such as vertical cross-section generator and mass computing tool. This system was developed by coding Avenue, a scripting language incorporated in ArcView, which is a commercial GIS software. Using the system, it is expected that users can make fast and accurate analysis and interpretation through real-time queries and by contemplating various objects in 3-D perspective.

  • PDF

A Subsurface Environmental Management System using Spatial Information System and Groundwater Model (공간정보시스템과 지하수모형을 결합한 지하환경관리시스템의 구축)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.287-291
    • /
    • 1999
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains the geographic spatial information system(GSIS), and the numerical model of groundwater flow and contamination. Numerical models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) and GSIS(ArcView) were integrated for the construction of an integrated management system of subsurface environment. The developed system was applied to the management of three mineral water companies located in clean mountain area. The impact of pumping over the overall catchment basin was modeled using the developed system for the decision of future management criteria.

  • PDF

Development and Enhancement of Conceptual Site Model for Subsurface Environment Management (지중환경 관리를 위한 부지개념모델 구축 및 개선)

  • Bae, Min Seo;Kim, Juhee;Lee, Soonjae;Kwon, Man Jae;Jo, Ho Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.1-18
    • /
    • 2022
  • A conceptual site model is used to support decision-making of response strategy development, determination, and implementation within a risk-based contaminated site management system. It aims to provide base information of the relevant site characteristics and surface/subsurface conditions in order to understand the contaminants of concern and the associated risk they pose to the receptors. This study delineated the technical details of conceptual site model development, and discussed the possibility of applying it in domestic subsurface contamination management. Conceptual site models can be developed in various formats such as tables, diagrams, flowcharts, and figures. Contaminated sites are managed for a long period of time following the steps of investigation, remediation design, remediation, verification, and post-remedation management. The conceptual site model can be enhanced in each stage of the contaminated site management based on the continuously updated information on the site's subsurface environment. In the process of enhancement for conceptual site model, precision is gradually improved, and it can evolve from a conceptual and qualitative form to a more quantitatvive and three-dimensional model. In soil pollution management, it is desirable to incorporate the conceptual site model into the soil scrutiny system to better assess the current status of the contaminated site and support follow-up investigation and management.

Development of Subsurface Spatial Information Model System using Clustering and Geostatistics Approach (클러스터링과 지구통계학 기법을 이용한 지하공간정보 모델 생성시스템 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.64-75
    • /
    • 2008
  • Since the current database systems for managing geotechnical investigation results were limited by being described boring test result in point feature, it has been trouble for using other GIS data. Although there are some studies for spatial characteristics of subsurface modeling, it is rather lack of being interoperable with GIS, considering geotechnical engineering facts. This is reason for difficulty of practical uses. In this study, we has developed subsurface spatial information model through extracting needed geotechnical engineering data from geotechnical information DB. The developed geotechnical information clustering program(GEOCL) has made a cluster of boring formation(and formation ratio), classification of layer, and strength characteristics of subsurface. The interpolation of boring data has been achieved through zonal kriging method in the consideration of spatial distribution of created cluster. Finally, we make a subsurface spatial information model to integrate with digital elevation model, and visualize 3-dimensional model by subsurface spatial information viewing program(SSIVIEW). We expect to strengthen application capacity of developed model in subsurface interpretation and foundation design of construction works.

  • PDF

A Subsurface Environment Management System Combining Computational Model and Spatial Information System (전산모형 및 공간정보시스템을 결합한 지하환경관리시스템의 개발 및 적용)

  • Kim, Joon-Hyun;Han, Young-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.99-108
    • /
    • 2001
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains numerical models and geographic information systems for underground flow and contamination. Multidimensional Finite Element Model for Subsurface Environment (MFEMSE) was invented to analyze underground flow and pollution problems of water and gas phases. Newly developed and conventional models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) were integrated with GIS (ArcView) for the construction of an integrated information management system of subsurface environment. This system was applied to the management of three mineral water companies located in clean high mountain basin. Desirable management criteria and operational strategies were suggested using this system. The system was constructed to be applied for the broad sense of decision supporting tools in related topics of this study, so that it can be used not only for the prevention regulations, but also for clean up projects.

  • PDF

Drilling for Lunar Surface Exploration and Shear Strength Evaluation Based on Drilling Information (달 지상탐사 지원에 필요한 시추 및 시추정보 기반 강도 평가)

  • Ryu, Byunghyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.21-31
    • /
    • 2022
  • Prospecting ice on Moon requires drilling systems to obtain subsurface samples and measure composition of ice deposits. Landers and rovers need to be equipped with drilling equipment in order to analyze the ice and subsurface resources located at the poles of Moon. These devices must be small, lightweight, low-power, highly efficient and high-performance units in order to function properly under the extreme conditions of the lunar environment. Researchers have developed a prototype drilling apparatus that is able to operate in atmospheric and cold environments. Newly developed drilling system in Korea, which is capable of performing not only sampling but also subsurface investigation, is introduced.

3-D seismic data processing system for underground investigation (지하 구조 영상화를 위한 3차원 탄성파 자료처리시스템 개발)

  • Sheen, Dong-Hoon;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.585-592
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for subsurface structure imaging and this system is developed in PC based on Linux for lower-cost computer. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing. The system which is constructed by using these data processing modules is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm

  • Zhang, Qiaodan;Hao, Kaixue;Li, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.495-513
    • /
    • 2020
  • The correlation identification of the subsurface is a novel electrical prospecting method which could suppress stochastic noise. This method is increasingly being utilized by geophysicists. It achieves the frequency response of the underground media through division of the cross spectrum of the input & output signal and the auto spectrum of the input signal. This is subject to the spectral leakage when the cross spectrum and the auto spectrum are computed from cross correlation and autocorrelation function by Discrete Fourier Transformation (DFT, "To obtain an accurate frequency response of the earth system, we propose an improved correlation identification method which uses all phase Fast Fourier Transform (APFFT) to acquire the cross spectrum and the auto spectrum. Simulation and engineering application results show that compared to existing correlation identification algorithm the new approach demonstrates more precise frequency response, especially the phase response of the system under identification.

Development of MDA-based Subsurface Spatial Ontology Model for Semantic Sharing (시멘틱 공유를 위한 MDA기반 지하공간정보 온톨로지 모델 개발)

  • Lee, Sang-Hoon;Chang, Pyoung-Wuck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.121-129
    • /
    • 2009
  • Today, it is difficult to re-use and share spatial information, because of the explosive growth of heterogeneous information and specific characters of spatial information accumulated by diverse local agency. A spatial analysis of subsurface spatial informa-tion, one of the National Spatial Data Infrastructure, needs related spatial information such as, topographical map, geologic map, underground facility map, etc. However, current methods using standard format or spatial datawarehouse cannot consider a se-mantic hetergenity. In this paper, the layered ontology model which consists of generic concept, measuremnt scale, spatial model, and subsurface spatial information has developed. Also, the current ontology building method pertained to human experts is a expensive and time-consuming process. We have developed the MDA-based metamodel(UML Profile) of ontology that can be a easy under-standing and flexiblity of environment change. The semantic quality of devleoped ontology model has evaluated by reasoning engine, Pellet. We expect to improve a semantic sharing, and strengthen capacities for developing GIS experts system using knowledge representation ability of ontology.

  • PDF