• 제목/요약/키워드: subsurface

검색결과 1,545건 처리시간 0.026초

용담댐 발전소 접지설계를 위한 대지비저항 모델링 및 접지저항 추정 (Earth Resistivity Modelling and Grounding Resistance Estimation for Yongdam Dam Power Station Grounding Design)

  • 오민환;김형수;김종득
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1188-1191
    • /
    • 1998
  • Detailed estimation of subsurface resistivity distribution and accurate estimation of actual fault current coming into the grounding system are indispensible to optimun grounding system design. Especially, it is essential for efficient grounding design to estimate subsurface resistivity distribution quantitatively and logically. Accurate estimation of subsurface resistivity distribution has an absolute influence on calculating touch voltage, step voltage and ground potential rise (GPR) which are related with grounding design standard for human safety. In this study, thirty-three electrical sounding surveys were made in Yongdam Power Station to obtain detailed subsurface resistivity distribution and the sounding data were interpreted quantitatively using multi-layered model. The results of the quantitative resistivity models were adopted practically to calculate grounding resistance values. Analytical asymptotic equations and CDEGS program were used in grounding resistance calculation and the results were compared and reviewed in the study.

  • PDF

Effect of Drainage System on ET and Drainage Flows

  • 정상옥
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.12-19
    • /
    • 1992
  • The effects of drainage system on evapotranspiration and drainage flows are studied. Data from drainage field experiment at Castalia in North Central Branch, Ohio Agricultural Research and Development Center were used in this study. A water table management model, ADATP (Agricultural Drainage and Pesticide Transport), which was developed by combining the GLEAMS and the subsurface drainage part of the DRAINMOD model with several modifications, was evaluated and used to predict hydrologic components. The ET is very much affected by the presence of tile drainage system but not significantly affected by the surface drainage system. The combined surface and subsurface drainage system gives the largest total outflow values while the surface drainage only system gives the smallest. Comparisons of model predicted and measured values of surface runoff only, subsurface drainage only, and combined surface runoff and subsurface drainage system are in satisfactory agreement. The model predicted values are within the range of the variations of the observed replications in general. Based on the results of the model evaluation study, it is concluded that ADAPT model can be used to design water table management systems.

  • PDF

배전반 접지저항 해석을 위한 시스템 설계 (Design a System for Analysis of Distributing Board with Grounding Resistance)

  • 고봉운;부창진;최승준;정광자
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.380-383
    • /
    • 2009
  • The grounding system of the subsurface should ensure the safe and reliable operation of power systems, and guarantee a human being's safety in the situation of grounding fault in the power system. The safety of power apparatus in the subsurface can be reached by decreasing grounding resistance and grounding potential rise of subsurface. This paper presents a method based on the design of an artificial neural network(ANN) model for modeling and predicting the relationship between the grounding resistance and temperature-humidity in the subsurface.

  • PDF

마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석 (Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction)

  • 이진영;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

박용 디젤기관 캠-롤러 접촉부의 응력 해석 (Stress Analysis on the Cam-Roller Contact Parts in a Marine Diesel Engine)

  • 김형자;임우조;조용주;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.174-180
    • /
    • 2002
  • The subsurface stress field beneath the roller's contacting surface due to the contact pressure in lubricating condition has been calculated. Main purpose of this study in view of engineering is to prove the validity of the numerical profile roller presented by Koo et al. The Love's rectangular patch solution was used to obtain the subsurface stress field. The stress field of the numerical profile roller was compared with the one of the existing dub-off profile roller The analysis results show reduced subsurface stresses for the numerical profile roller.

Subsurface origin of merging and fragmentation in AR10930

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.41.2-41.2
    • /
    • 2019
  • The aim of this study is to demonstrate the subsurface origin of the complex observed evolution of the solar active region 10930 (AR10930) associated with merging and breakup of magnetic polarity regions at the solar surface. This is important for a comprehensive understanding of observed properties of the active region, because subsurface magnetic flux and subsurface dynamical processes are seamlessly connected to surface magnetic flux and surface dynamical processes, respectively. In other words, the solar surface does not behave as an impermeable boundary towards magnetic flux and dynamical processes. In this talk, we show a magnetohydrodynamic (MHD) model of merging and fragmentation in AR10930. We then discuss what physical processes could be involved in the characteristic evolution of an active region magnetic field that leads to the formation of a sunspot surrounded by satellite polarity regions.

  • PDF

관재료 및 피복재료별 농경지 암거배수 효과 분석 (Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material)

  • 정상옥
    • 한국농공학회지
    • /
    • 제37권5호
    • /
    • pp.53-61
    • /
    • 1995
  • Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material are made by the laboratory experiments using soil box to give basic information for the subsurface drainage system planning and design. Three different diameter PVC perforated pipes and a mesh pipe are used with envelop materials such as sand, rice bran, and crushed stone. Steady state subsurface drainage flow rate increased as envelop material changed from sand to rice bran and crushed stone. This indicates that as the hydraulic conductivity of the envelop material increases, the drainage flow rate increases. On the other hand, for a given envelop material, the mesh pipe which has the largest openning area shows the largest flow rate while small diameter PVC pipes show small flow rates. This tells that as the openning area and pipe diameter increase, the flow rate increases, too. Therefore, selection of pipe and envelop material should be made in accordance with the design drainage flow rate. Unsteady state subsurface drainage flow rate with respect to time differs for different envelop material. In case the sand was used as an envelop material, the small diameter PVC pipes show larger flow rates than the large diameter PVC pipe and mesh pipe. When the rice bran was used, the mesh pipe shows the largest flow rate, while small diameter pipes show smaller flow rates. In case the crushed stone was used as an envelop material, the large diameter PVC pipe and mesh pipe show larger flow rates, while small diameter pipes show a little bit smaller flow rates. However, the variation of flow rates among different pipes is the smallest when the crushed stone is used. The flow rate curve with respect to the pipe changes little for the crushed stone envelop which has a large hydraulic conductivity, while that changes much for the sand and rice bran envelops. However, it is difficult to draw a consistent relationship between the drainage flow rate and pipe for all the envelop materials. Since the subsurface drainage experiments are made only under the restricted laboratory condition in this study, further study including field experiment is required.

  • PDF

지열펌프 구동에 의한 지중 온도 분포 변화 모델링 연구 (Numerical Simulation for the Subsurface Temperature Distribution Disturbed by Heat-Pump Operation)

  • 신지연;배광옥;이강근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.40-43
    • /
    • 2006
  • Public demand for the heat pump system as a next generation energy equipment is increasing for its eco-friendly and cost-effective advantage. Many researches have been concentrated on how to calculate and develop its own efficiency, while the possible effect of the heat pump operation on the whole subsurface temperature distribution is relatively less considered, During the current study, subsurface temperature disturbance caused by seasonal surface temperature cycle in Busan area and general W-tube heat pump operation is simulated in 3-dimensional heterogeneous medium. It shows that subsurface deeper than 10m from the surface remains nearly unchanged throughout the 4 seasons and groundwater convect ion in highly permeable layer near the surface acts like a main path of heat plume from heat pump system, This implies the significance of detail descript ion in shallow sedimentary layer or highly permeable layer which plays an important role on the regional flow advection and heat transfer. Also, the effect of groundwater convection increases when the arrangement of the 2 injection pipes and 2 extract ion well is maintained parallel to groundwater flow. Therefore, more careful and detail investigation is required before installation and operation of heat pump system that it may not cause any possible change of microbial ecosystem in the shallow subsurface environment or 'contamination of temperature' for groundwater use as well as the loss of efficiency of the equipment itself. This can also help to design the optimized grouting system for heat pump.

  • PDF

Louisiana의 농장에서 Trifluralin의 유출 (Runoff of Trifluralin from Fields in Louisiana)

  • 금정호
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.585-592
    • /
    • 1996
  • 미국 Louisiana주 Baton Rouge에 있는 농장 14.6ha에 전 처리 제초제 Trifluralin (2,6-dinitro-N, N-dipropyl-4-(trifluormethyl) benzenamine)을 1683 g/1ha 살포하고, 3개월간 유출량을 조사하였다. 토층 15 cm에서 Trifluralin의 반감기는 42.6~46.0일 이었다. 암거배수포장에서 Trifluralin의 농도는 surface의 유출수에서 0.62ng/mL~0.02ng/mL 이었으며, subsurface의 유출수에서 0.06ng/mL~0.02ng/mL 이었다. 이는 미국의 Trifluralin 음료수 허용기준 2ng/mL 보다 낮은농도이다. 3개월간 유출된 Trifluralin량은 전체 살포량의 0.021%였으며, 따라서 유출수에 의한 Trifluralin 이동되는 양은 적었다. 한편 subsurface의 유출수에 Trifluralin농도가 낮기때문에 암거배수시설로 Trifluralin의 유출량을 줄일 수 있다.

  • PDF

降雨에 의한 急斜面의 일시적인 飽和帶形成과 중간류 流出 (The Formation of Transient Saturation Zone and the Subsurface flow on the Steep Hillslope by Rains)

  • 안중기
    • 한국수자원학회논문집
    • /
    • 제31권2호
    • /
    • pp.167-176
    • /
    • 1998
  • 급사면에 관측정, 텐시오메타, 트렌치 등의 시설을 설치하고 포화대의 형성 과정과 중간류의 유출특성을 관측하여 분석하였다. 사면의 토양이 건조한 때에 내린 강우(총강우량 103mm)에 의해 포화대는 사면 상부 관측정부터 형성되기 시작하여 강우 종료 수 시간 후에 사면 전체에 발달하였다. 이 포화대는 포화대 형성에 필요한 것보다 적은 양의 강우에 의해 형성되었고, 포화대내의 일부 깊이의 토양 수분이 불포화 상태이었기 때문에 포화대는 침투수가 일부 토양만을 포화시켜 형성된 것으로 판단된다. 이 포화대로부터 중간류는 포화대 형성 초기에 0∼40cm 깊이의 토양층을 통해 유출될 뿐 40∼80cm 깊이의 토양층을 통한 유출은 거의 없었다. 사면에 형성된 기존의 포화대의 수위는 강우에 빠르게 반응하며 중간류는 수위상승과 동시에 대부분 40∼80cm 깊이의 토양층을 통해 유출되기 시작하였다. 포화대의 최대 수위가 유사한 4개 강우의 40∼80cm 깊이의 토양층을 통한 중간류 유출률은 선행 강우량과 관계가 있었다.

  • PDF