• Title/Summary/Keyword: substructure approach

Search Result 53, Processing Time 0.021 seconds

Exploring Efficient Solutions for the 0/1 Knapsack Problem

  • Dalal M. Althawadi;Sara Aldossary;Aryam Alnemari;Malak Alghamdi;Fatema Alqahtani;Atta-ur Rahman;Aghiad Bakry;Sghaier Chabani
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.15-24
    • /
    • 2024
  • One of the most significant issues in combinatorial optimization is the classical NP-complete conundrum known as the 0/1 Knapsack Problem. This study delves deeply into the investigation of practical solutions, emphasizing two classic algorithmic paradigms, brute force, and dynamic programming, along with the metaheuristic and nature-inspired family algorithm known as the Genetic Algorithm (GA). The research begins with a thorough analysis of the dynamic programming technique, utilizing its ability to handle overlapping subproblems and an ideal substructure. We evaluate the benefits of dynamic programming in the context of the 0/1 Knapsack Problem by carefully dissecting its nuances in contrast to GA. Simultaneously, the study examines the brute force algorithm, a simple yet comprehensive method compared to Branch & Bound. This strategy entails investigating every potential combination, offering a starting point for comparison with more advanced techniques. The paper explores the computational complexity of the brute force approach, highlighting its limitations and usefulness in resolving the 0/1 Knapsack Problem in contrast to the set above of algorithms.

A Study on Joint Damage Model and Neural Networks-Based Approach for Damage Assessment of Structure (구조물 손상평가를 위한 접합부 손상모델 및 신경망기법에 관한 연구)

  • 윤정방;이진학;방은영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.9-20
    • /
    • 1999
  • A method is proposed to estimate the joint damages of a steel structure from modal data using the neural networks technique. The beam-to-column connection in a steel frame structure is represented by a zero-length rotational spring of the end of the beam element, and the connection fixity factor is defined based on the rotational stiffness so that the factor may be in the range 0~1.0. Then, the severity of joint damage is defined as the reduction ratio of the connection fixity factor. Several advanced techniques are employed to develop the robust damage identification technique using neural networks. The concept of the substructural indentification is used for the localized damage assessment in the large structure. The noise-injection learning algorithm is used to reduce the effects of the noise in the modal data. The data perturbation scheme is also employed to assess the confidence in the estimated damages based on a few sets of actual measurement data. The feasibility of the proposed method is examined through a numerical simulation study on a 2-bay 10-story structure and an experimental study on a 2-story structure. It has been found that the joint damages can be reasonably estimated even for the case where the measured modal vectors are limited to a localized substructure and the data are severely corrupted with noise.

  • PDF

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.