• Title/Summary/Keyword: substrate thickness

Search Result 1,917, Processing Time 0.032 seconds

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Development of On-Board Dual-Band Antenna for Small Walkie-Talkie (소형 무전기를 위한 On-Board 이중대역 안테나 개발)

  • Park, Young-bae;Lee, Sang-suck;Lee, Young-hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.885-894
    • /
    • 2015
  • In this paper, it can be applied to a walkie-talkie, the RFID / USN 920 MHz band(917~923.5 MHz) and WiFi 2.4GHz band(2.4~2.483 5GHz) return loss is 10 dB over the band, on-board dual band with omni-directional radiation characteristics is proposed. The basic structure designed antenna is used meander monopole antenna. It was used as double stubs and tabs for antenna designs that meet the criteria proposed. The double stub and the tab affects the reactance of the antenna to form a common-mode and differential-mode in the stub to improve the antenna characteristics and return loss in the bandwidth, gain and radiation characteristics. The system size of walkie-talkie is $52{\times}77mm^2$, the size of the antenna is limited to $52{\times}15mm^2$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. For experimental results, the return loss is measured more than 10 dB, the maximum gain is measured 1.95 dB, the maximum bandwidth is measured 360 MHz, the radiation characteristic is measured omni-directional. By a walkie-talkie terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

Characteristics and Fabrication of Thermal Oxidized-SnO2 (SnO2 열산화감지막의 제작 및 특성)

  • Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.342-349
    • /
    • 2002
  • New formation technique of metal oxide sensing film was proposed m this paper. Silicon wafer with Pt electrodes was used as a substrate for depositing metal Sn film. Metal Sn was deposited in the state of not continuous film but only island state. The samples were prepared to obtain the optimal condition of metal Sn deposition. The resistances of deposited Sn onto Pt electrodes amounted to $1\;k{\Omega}$, $5\;k{\Omega}$, $10\;k{\Omega}$ and $50\;k{\Omega}$, respectively. Also The sample with $1,500\;{\AA}$ thickness of Sn was prepared m order to compare sensing properties between conventional type and proposing type. After deposition of metal Sn, $SnO_2$ was formed by thermal oxidation method for 3 hrs. in $O_2$ ambient at $700^{\circ}C$. Surface morphology, crystal structure and surface roughness of oxidized-sensing film were examined by SEM, XRD, and AFM, respectively. From the results of these analyses, the optimal deposition condition of Sn was that the Pt electrode resistance became $10\;k{\Omega}(300\;{\AA})$. Also, the sensing characteristics of fabricated sensing film for various concentrations of butane, propane and carbon monoxide gases were measured at he operating temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$, respectively. Although catalyst as not added to the sensing film, it has exhibited the high sensitivity to all the test gases.

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.

Design of A Miniaturized Low Pass Filter Using Common Defected Ground Structure (공통 결함접지구조를 이용한 소형화된 저역통과여파기의 설계)

  • Lee, Jun;Lee, Jae-Hoon;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2298-2304
    • /
    • 2011
  • This paper describes and presents the design of a miniaturized low pass filter (LPF) for microwave frequency region using a common defected ground structure (CDGS). In this study a half-sized LPF is obtained using CDGS, while the previous LPFs with the conventional DGS showed a mild size-reduction. The common DGS (CDGS) is realized on the common ground plane of two microstrip lines, i. e double-sided microstrip lines, which exist back-to-back to each other. In order to show the validity of the proposed design, an example of LPF using CDGS and double-sided microstrip lines is designed, fabricated and measured using the dielectric substrate with the dielectric constant of 2.2 and with the thickness of 31mils. The size of the designed LPF using CDGS is only 52.6% compared to that of the previous LPF with the conventional DGS. In addition, it is shown that the performances of the proposed LPF are well preserved after the size-reduction with the measured S11 and S21 of -22dB, min and -0.19dB, max, respectively.

A Study on the fabrication of Bandpass filter Using a Simulator (시뮬레이터를 이용한 대역통과 필터 제작)

  • 유일현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 2000
  • We have studied to obtain the frequency characteristics of the Surface Acoustic Wave(SAW) bandpass filter, having low shape factor, it's interdigital transducer(IDT) was formed on the 35° Y-cut X-propagation Quartz substrate and was evaporated by Aluminium. And then, we performed computer-simulation by a simulator. And, we can design that the apodization weighted type IDT as an input transducer of the filter and the withdrawal weighted type IDT as an output transducer of the filter from the results of our computer-simulation. Also, we have employed that the number of pairs of the input and output IDT are 2200 pairs and 1000pairs, respectively and used the Kaiser-Bessel window function in order to minimize the effect of ripple. And, while the width and the space of IDT's finger are 6㎛ m and 5.75㎛, respectively and we could obtain the resonable results when the IDT thickness was 6000Å in consideration of the ratio of SAW's wavelength, and IDT aperture is 2mm. Frequency response of the fabricated SAW bandpass filter has the property that the center frequency is about 70MHz, shape factor is less than 1.3, bandwidth at the 1.5dB is probably 1.3MHz, out-band attenuation is almost -45dB, insertion loss is 19dB and ripple in the width of bandpass is 1dB approximately. Therefore, these frequency characteristics of the fabricated SAW bandpass filter are agreed well with the designed values.

  • PDF

Fabrication and Characterization of Bi-axial Textured Conductive Perovskite-type Oxide Deposited on Metal Substrates for Coated Conductor. (이축 배향화된 전도성 복합산화물의 금속 기판의 제조와 분석)

  • Sooyeon Han;Jongin Hong;Youngah Jeon;Huyong Tian;Kim, Yangsoo;Kwangsoo No
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.235-235
    • /
    • 2003
  • The development of a buffer layer is an important issue for the second -generation wire, YBCO coated metal wire. The buffer layer demands not only on the prohibition of the reaction between YBCO and metal substrate, but also the proper lattice match and conductivity for high critical current density (Jc) of YBCO superconductor, In order to satisfy these demands, we suggested CaRuO3 as a useful candidate having that the lattice mismatches with Ni (200) and with YBCO are 8.2% and 8.0%, respectively. The CaRuO3 thin films were deposited on Ni substrates using various methods, such as e-beam evaporation and DC and RF magnetron sputtering. These films were investigated using SEM, XRD, pole-figure and AES. In e-beam evaporation, the deposition temperature of CaRuO3 was the most important since both hi-axial texturing and NiO formation between Ni and CaRuO3 depended on it. Also, the oxygen flow rate had i[n effect on the growth of CaRuO3 on Ni substrates. The optimal conditions of crystal growth and film uniformity were 400$^{\circ}C$, 50 ㎃ and 7 ㎸ when oxygen flow rate was 70∼100sccm In RF magnetron sputtering, CaRuO3 was deposited on Ni substrates with various conditions and annealing temperatures. As a result, the conductivity of CaRuO3 thin films was dependent on CaRuO3 layer thickness and fabrication temperature. We suggested the multi-step deposition, such as two-step deposition with different temperature, to prohibit the NiO formation and to control the hi-axial texture.

  • PDF

Preparation and Characterization of Photocatalytic Paper for VOCs Adsorption and Oxidation Decomposition (VOC흡착 및 산화분해 특성을 갖는 광촉매종이의 제조 및 특성 평가)

  • Yoo, Yoon-Jong;Kim, Hong-Soo;Jeon, Sang-Ho;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Highly durable photocatalytic paper containing anatase $TiO_{2}$, active carbon and ceramic fiber, which can adsorb VOCs and decompose them by photo oxidation simultaneously, was manufactured and characterized. Optimum concentration of PDADMAC to let $TiO_{2}$ adhere on the surfaces of active carbon and ceramic fiber selectively was $10\~15$ ppm in a slurry mixture for making photocatalytic paper. The thickness and basis weight of the produced catalytic paper by paper-making method were 0.4 mm and 380 $g/m^{2}$, respectively. Adsorption reaction by active carbon and photocatalytic decomposition reaction by $TiO_{2}$ were proceeded simultaneously, by which the abatement rate was found to be greatly enhanced compared to the similar environment with single adsorption reaction or single photocatalytic reaction only. The selective attachment of $TiO_{2}$ on ceramic fiber and active carbon was found to be very effective in preventing decomposition of substrate by the $TiO_{2}$ attack during exposure to UV light.

Design of CPW-Fed Printed Monopole Antenna for CDMA/WLAN (CDMA/WLAN 겸용 CPW 급전 인쇄형 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Song, Won-Ho;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.623-629
    • /
    • 2015
  • In the present study, a coplanar waveguide (CPW)-fed printed monopole antenna with an inverted n-shaped slot is newly proposed for dual band operations which cover bandwidths of CDMA (1.85~2.025 GHz) and WLAN (2.4~2.484 GHz) as well as implementation of omnidirectional radiation pattern. For enhancement of impedance bandwidth ($S11{\leq}10dB$) in 2.4 GHz WLAN frequency band, an inverted n-shaped slot instead of the previous n-shaped slot is etched on the printed radiating monopole. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm, and size of $50{\times}25mm^2$. It has been observed that the measured impedance bandwidths are 280 MHz (1.84~2.12 GHz) in frequency band of CDMA and 420 MHz (2.38~2.8 GHz) in WLAN frequency band respectively. It is noticeable that impedance bandwidth in 2.4 GHz frequency band of WLAN is enlarged to three times due to use of inverted L-shaped slot in comparison with impedance bandwidth 140 MHz (2.39~2.53 GHz) obtained by use of the previous n-shaped slot. In addition, good omnidirectional radiation patterns have been observed over the entire frequency band of interest.