• Title/Summary/Keyword: substrate roughness

Search Result 629, Processing Time 0.027 seconds

Effects of the Surface Roughness of a Graphite Substrate on the Interlayer Surface Roughness of Deposited SiC Layer (SiC 증착층 계면의 표면조도에 미치는 흑연 기판의 표면조도 영향)

  • Park, Ji Yeon;Jeong, Myung Hoon;Kim, Daejong;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.122-126
    • /
    • 2013
  • The surface roughness of the inner and outer surfaces of a tube is an important requirement for nuclear fuel cladding. When an inner SiC clad tube, which is considered as an advanced Pressurized Water Cooled Reactor (PWR) clad with a three-layered structure, is fabricated by Chemical Vapor Deposition (CVD), the surface roughness of the substrate, graphite, is an important process parameter. The surface character of the graphite substrate could directly affect the roughness of the inner surface of SiC deposits, which is in contact with a substrate. To evaluate the effects of the surface roughness changes of a substrate, SiC deposits were fabricated using different types of graphite substrates prepared by the following four polishing paths and heat-treatment for purification: (1) polishing with #220 abrasive paper (PP) without heat treatment (HT), (2) polishing with #220 PP with HT, (3) #2400 PP without HT, (4) polishing with #2400 PP with HT. The average surface roughnesses (Ra) of each deposited SiC layer are 4.273, 6.599, 3.069, and $6.401{\mu}m$, respectively. In the low pressure SiC CVD process with a graphite substrate, the removal of graphite particles on the graphite surface during the purification and the temperature increasing process for CVD seemed to affect the surface roughness of SiC deposits. For the lower surface roughness of the as-deposited interlayer of SiC on the graphite substrate, the fine controlled processing with the completed removal of rough scratches and cleaning at each polishing and heat treating step was important.

Effect of surface toughness on the interfacial adhesion energy between glass wafer and UV curable polymer for different surface roughness (표면거칠기에 따른 글래스 웨이퍼와 UV 경화 폴리머사이의 계면접착 에너지 평가)

  • Jang, Eun-Jung;Hyun, Seoung-Min;Choi, Dae-Geun;Lee, Hak-Joo;Park, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.40-44
    • /
    • 2008
  • The interfacial adhesion energy between resist and a substrate is very important due to resist pull-off problems during separation of mold from a substrate in nanoimprint process. And effect of substrate surface roughness on interfacial adhesion energy is very important. In this paper, we have treated glass wafer surface using $CF_4$ gas for increase surface roughness and it has tested interfacial adhesion properties of UV resin/glass substrate interfaces by 4 point bending test. The interfacial adhesion energies by bare, 30, 60 and 90 sec surface treatments are 0.62, 1.4, 1.36 and 2 $J/m^2$, respectively. The test results showed quantitative comparisons of interfacial fracture energy (G) effect of glass wafer surface roughness.

  • PDF

Production and measurement of a super-polished low-scattering mirror substrate (초연마 저산란 반사경 기판 제작과 평가)

  • 조민식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • Production and measurement of a super-polished few-ppm-scattering mirror substrate are investigated. In order to improve the surface roughness directly determining scattering, the super-polishing process using Bowl-Feed technique is tried. The surface quality of the super-polished substrate is estimated by the phase-measuring interferometer. For the reliable roughness measurement using the interferometer, data averaging method is applied so that the optimal data averaging condition, 30 phase-data averaging and 20 intensity-data averaging, minimizing the measurement error is experimently searched. Based on the optimal data averaging condition, surface roughness of home-made mirror substrate is measured to be less than $0.5{\AA}$ rms corresponding to 2-ppm total-integrated-scattering.

  • PDF

Effect of surface roughness of AlN substrate and sintering temperature on adhesion strength of Ag thick film conductors (AlN 기판의 표면조도 및 소결온도가 Ag 후막도체의 접착강도에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.83-90
    • /
    • 2020
  • The effect of substrate surface roughness and sintering temperature on the adhesion strength of Ag-based thick film conductors formed on AlN substrates with excellent thermal conductivity was studied. The adhesion strength of the thick-film conductor manufactured using an AlN substrate having a surface roughness (Ra) of 0.5 was higher than that of a thick-film conductor manufactured using a substrate having a surface roughness greater or smaller than this. In the case of a substrate with a surface roughness of less than 0.5, the contact area between the Ag thick film conductor and the substrate was relatively smaller than that of a substrate with a surface roughness of 0.5, resulting in a lower adhesive strength. On the other hand, when a substrate having a surface roughness of more than 0.5 was used, it was found that the conductor film was not completely adhered to the substrate, and as a result, it was found that the adhesive strength was small. In addition, it was found that the surface smoothness of the Ag-based thick film conductor film obtained by sintering at 850℃ was the best compared to the smoothness of the conductor film obtained by sintering at different sintering temperatures, and as a result, it was found that the adhesive strength of the conductor film was the highest.

Effect of Maunfacturing Conditions of Substrate on Phosphatability (인삼염처리성에 미치는 소재 제조조건 영향)

  • 김형준
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.310-319
    • /
    • 1997
  • The purpose of this study is to investigate the effect of the specific alloying elements in steel such as Cr, Ni and Cu, and surface roughness of substrate with two different FCS temperature zones in the CAL process on the phosphatability of the cold-rolled sheet used for the drum in order to improve the zinec phosphating property. Phosphatability is dependent of the surface oxide and roughness on the substrate and can be indirectly improved by increasing surface roughness of the steel sheet. Basically, in order to obtain the good phosphatability, the low concentration of the retained elements such as Cr, Ni and Cu among the steel alloy elements should be required. Phosphatability of substrate with high concentration instead of the retained elements and surface roughness, however, can be effectively improved instead of low FSC temperature.

  • PDF

Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate

  • Seo, Junyoung;Kim, Taekyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.209-216
    • /
    • 2018
  • Sapphire is a substrate material that is widely used in optical and electronic devices. However, the processing of sapphire into a substrate takes a long time owing to its high hardness and chemical inertness. In order to process the sapphire ingot into a substrate, ingot growth, multiwire sawing, lapping, and polishing are required. The lap grinding process using pellets is known as one of the ways to improve the efficiency of sapphire substrate processing. The lap grinding process ensures high processing efficiency while utilizing two-body abrasion, unlike the lapping process which utilizes three-body abrasion by particles. However, the lap grinding process has a high material removal rate (MRR), while its weakness is in obtaining the required surface roughness for the final polishing process. In this study, we examine the effects of free abrasives in lap grinding on the material removal characteristics of sapphire substrate. Before conducting the lap grinding experiments, it was confirmed that the addition of free abrasives changed the friction force through the pin-on-disk wear test. The MRR and roughness reduction rate are experimentally studied to verify the effects of free abrasive concentration on deionized water. The addition of free abrasives (colloidal silica) in the lap grinding process can improve surface roughness by three-body abrasion along with two-body abrasion by diamond grits.

Surface roughness characteristics of the super-polished (Bowl-feed 연마기법에 의한 초연마 반사경 기판의 표면 거칠기 특성)

  • 조민식
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.312-316
    • /
    • 2000
  • Vole lllvesnguted the surface roughness charactenstics of the super~polished mirror substrate made by bowl-feed technique. in comparison with the case of fresh-feed technique. Fresh-feed techmque and bowl-feed technique were tried lor substrate surface polishing, and the surface roughne~s was estimated by phase-measunng interferometry. l11e slilface roughness of the substrate after bowl-feed procedure was Improved approxImately three times as fine as that after fresh-feed procedure. and tbe nns roughness of less than $0.5\AA$ and up to $0.3\AA$ at its best was obtained for the bowl-feed procedure. The surface roughness changes by (he bowl-feed technique. compated with tbe fresh-feeclleclmique. were analyzed witb tbe help of both 1 -dimensional roughne,>s profde and rougbness amplItude spect1U1l1 of the polished substrate, whIch ascertained that the final polishing partIcle size of the bowl-feed ptocedure was much smaller than that of the fresh~feed procedure. edure.

  • PDF

Thick Copper Substrate Fabrication by Air-Cooled Lapping and Post Polishing Process (공기 냉각 방식의 래핑을 이용한 구리 기판 연마 공정 개발)

  • Lee, Ho-Cheol;Kim, Dong-Jun;Lee, Hyun-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.616-621
    • /
    • 2010
  • New type of the base material of the light-emitting diode requires copper wafer in view of heat and electrical conductance. Therefore, polishing process of the substrate level is needed to get a nanometer level of surface roughness as compared with pattern structure of nano-size in the semiconductor industry. In this paper, a series of lapping and polishing technique is shown for the rough and deflected copper substrate of thickness 3mm. Lapping by sand papers tried air cooling method. And two steps of polishing used the diamond abrasives and the $Al_2O_3$ slurry of size 100mm considering the residual scratch. White-light interferometer proved successfully a mirror-like surface roughness of Ra 6nm on the area of $0.56mm{\times}0.42mm$.

The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment (아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선)

  • 이승호;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

Photoluminescence Characteristics Y2O3:Eu3+ Thin Film Grown on Al2O3(0001) Substrate by PLD (PLD 방법으로 Al2O3(0001) 기판 위에 증착한 Y2O3:Eu3+ 박막의 형광 특성)

  • Yi, Soung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.252-257
    • /
    • 2004
  • $Y_{2}O_{3}:Eu^{3+}$ thin films have been grown on $Al_{2}O_{3}$(0001) substrates by a pulsed laser deposition (PLD) method. The phosphor thin films were deposited at a substrate temperature of 500, 600, and $700^{\circ}C$ under the oxygen pressure of 100, 200, and 300 mTorr. The crystallinity, surface roughness and photoluminescence of the films are highly dependent on the substrate temperature and oxygen pressure. The films grown on $Al_{2}O_{3}$(0001) substrate even under the different substrate temperatures and oxygen pressures exhibited (222) preferred orientation. The luminescent spectra exhibited strong luminescence of ${^{5}D_{0}}-{^{7}F_{2}}$ transition within $Eu^{+3}$ peaking at 612 nm. The crystallinity and luminescence intensity of the films have been improved as the substrate temperature increasing. With increase of oxygen pressure from 50 to 300 mTorr, the crystallinity of the films has been uniformly decreased. The photoluminescence intensity and surface roughness have similar behaviors as a function of oxygen pressure. At 200 mTorr, both photoluminescence intensity and surface roughness show a maximum.