• Title/Summary/Keyword: substrate inhibitor

Search Result 307, Processing Time 0.025 seconds

Honokiol : A Noncompetitive Tyrosinase Inhibitor from Magnoliae Cortex

  • Tian, Yu-Hua;Kang, Tai-Hyun;Kim, Hyun-Chul;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • v.11 no.2
    • /
    • pp.89-91
    • /
    • 2005
  • Effect of the neolignans, honokiol (1) and magnolol (2), isolated from Magnoliae Cortex on mushroom tyrosinase activity was investigated in vitro using L-tyrosine as a substrate. Honokiol (1) inhibited tyrosinase activity significantly in a concentration-dependent manner, on the other hand, magnolol (2) did not show tyrosinase inhibitory effect. Honokiol exhibited tyrosinase inhibitory effect with $IC_{50}$ value of $67.9\;{\mu}M$, and proved to act as a non-competitive inhibitor by the analysis of Lineweaver-Burk plot.

Inhibition of Carboxypeptidase A with$\beta$-Lactone-bearing phenylalanine. Design, Synthesis, and Stereochemistry-dependent Inhibition Mode

  • Lee, Mi Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1236-1242
    • /
    • 2001
  • (3S,1'S)-3-(1'-Carboxy-2'-phenyl)ethylamino-2-oxetanone (1a) and (3R,1'S)-3-(1'-carboxy-2'-phenyl)ethylamino-2-oxetanone (1b) were designed, synthesized, and evaluated as inhibitors for carboxypeptidase A, a prototypical zinc protease that removes the C-terminal amino acid having an aromatic side chain from oligopeptide substrate. It was concluded from the analysis of inhibition kinetics that while 1a inactivates CPA irreversibly, its diastereoisomer, 1b is a weak competitive inhibitor for CPA. A possible explanation for the observed difference in inhibition mode that is dependent on the inhibitor stereochemistry is offered.

Comparison of X-ray Crystallographic Structures and Docking Models of Dihydrofolate Reductase-Inhibitor Complexes (Dihydrofolate Reductase-저해제 복합체에 대한 X-선 결정체 구조와 docking model의 구조 비교)

  • 안미현;최인희;김춘미
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.416-425
    • /
    • 2002
  • A comparative study to validate the reliability of a fully automated docking program, FlexiDock, was carried out to predict the binding modes of DHFR-inhibitor complex. The inhibitors were extracted from the crystallographically determined DHFR-NADP$^{+}$(H)-inhibitor ternary complexes of human, Escherichia coli and Candida albicans and then docked back into the remaining DHFR-NADP$^{+}$(H) binary complexes using FlexiDock. The resulting conformations and orientations were compared to the original crystal complex structures for reproducibility. Then, folate, the substrate, and known inhibitors such as methotrexate, piritrexim and trimethoprim were docked into the wild-type human DHFR and their binding modes were compared with X-ray crystallographic or other modeling data. The root mean square deviations (RMSDs) for ligands ranged from 1.14 to 1.57$\AA$, and the protein backbone RMSDs from 0.94 to 1.26$\AA$. FlexiDock reproduced the orientations and binding modes of all seven ligands in good agreement with the crystal structures. It proved to be a reliable and efficient program in studying binding modes of DHFR-inhibitor complexes of different species, and the information obtained from this work may provide additional insight into the design of new agents with improved activity.ity.

Development of Soluble Epoxide Hydrolase Inhibitor Screening Methods for Discovery of Drug Candidate in Cardiovascular Diseases (심혈관계 질환 치료제 후보물질 발굴을 위한 Soluble Epoxide Hydrolase 억제평가 방법 개발)

  • Lee, Gwan-Ho;Kim, Bong-Hee;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Soluble epoxide hydrolase (sEH) is a metabolic regulator of epoxyeicosatrienoic acids (EETs). EETs have many beneficial effects, vasodilation, anti-diabetes, anti-inflammation, cardiovascular protection, renal protection. Therefore, selective sEH inhibitors have a potential for treating these diseases. In the present study, screening methods for sEH inhibitors using PHOME ((3-phenyl-oxiranyl)-acetic acid cyano-(6-methoxynaphthalen-2-yl)-methyl ester) and 14-15-EET as substrates were established. To determine selectivity, microsomal epoxide hydrolase (mEH) inhibition assay was also developed using styrene oxide as a substrate of microsomal epoxide hydrolase. Our results obtained from 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid (AUDA) used as a positive sEH inhibitor and valpromide used as a positive mEH inhibitor showed that these methods are useful for discovery of drug candidates.

Dynamical Analysis of Cellular Signal Transduction Pathways with Nonlinear Systems Perspectives (비선형시스템 관점으로부터 세포 신호전달경로의 동역학 분석)

  • Kim Hyun-Woo;Cho Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1155-1163
    • /
    • 2004
  • Extracellular signal-regulated kinase (ERK) signaling pathway is one of the mitogen-activated protein kinase (MAPK) signal transduction pathways. This pathway is known as pivotal in many signaling networks that govern proliferation, differentiation and cell survival. The ERK signaling pathway comprises positive and negative feedback loops, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. In this paper, we attempt to model the ERK pathway by considering both of the positive and negative feedback mechanisms based on Michaelis-Menten kinetics. In addition, we propose a fraction ratio model based on the mass action law. We first develop a mathematical model of the ERK pathway with fraction ratios. Secondly, we analyze the dynamical properties of the fraction ratio model based on simulation studies. Furthermore, we propose a concept of an inhibitor, catalyst, and substrate (ICS) controller which regulates the inhibitor, catalyst, and substrate concentrations of the ERK signal transduction pathway. The ICS controller can be designed through dynamical analysis of the ERK signaling transduction pathway within limited concentration ranges.

Preparation and Properties of Rust-Removing Polymer Gel (녹제거 폴리머겔의 제조 및 특성)

  • Kang, Young-Goo;Kim, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.41-46
    • /
    • 2004
  • The formation of rust on metallic substrate is known to cause the damages and destructions of raw materials, which is one of the leading reasons of sturctural collapses and many kind of hazards in modern industry. Polymer gels with rust removing effects were compounded in this study by employing various kinds of acids like hydrochloric acid, phosphoric acid, gluconic acid, oxalic acid as the rust removing ingredients. TEA(Triethanolamine) as dispersant and hydrophilic chemical were used for effective gelation of acids. Also corrosion inhibitor was added to enable the coating effect and to improve rust removing effect on metallic surface. In order to investigate the rust properites on metallic substrate, artificial rusts were prepared in salt solution, using iron, copper, aluminium and brass as the base metals. The properties of gel compounds were checked by gelation, pH, viscosity, morphology property and rust removing test. Developed gel compounds in this study have a good rust removing property, showing a strong adhesion on horizontal and vertical metallic surface, and can be easily rinsed off by water.

Inhibition of Various Proteases by MAPI and Inactivation fo MAPI by Trypsin

  • Lee, Hyun-Sook;Kho, Yung-Hee;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • MAPI (microbial alkaline protease inhibitor) was isolated from cultrue broth of Streptomyces chromofuscus SMF28. The Ki values of MAPI for the representative serine proteases such as chymotrypsin and proteinase K were 0.28 and $0.63{\;}\mu\textrm{M}$, respectively, and for the cysteine proteases cathepsin B and papain were 0.66 and $0.28{\;}\mu\textrm{M}$, respectively. These data indicate that MAPI is not a potent selective inhibitor of serine or cysteine proteases. Progress curves for the inhibition of three proteases by MAPI exhibithe characteristic patterns; MAPI exhibited slow-binding inhibition of cathepsin B. It was rapidly associated with chymotrypsin before the addition of substrate and then reactivation of MAPI-inhibited enzyme was investigated in the presence of substrate. On the other hand, MAPI-proteinase K interaction was typical for those classical inhibitors. When MAPI was incubated with trypsin, there was an extensive reduction in the ingibitory activities of MAPI corresponding to 66.5% inactivation of MAPI, indicating that trypsin-like protease may play a role in the decrease of the inhibitory activity during cultivation.

  • PDF

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes

  • Kim, In-Seop;Kang, Sung-Gyun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.315-321
    • /
    • 1995
  • The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp.In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl .alpha.-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.

  • PDF