• Title/Summary/Keyword: substitutional carbon

Search Result 15, Processing Time 0.027 seconds

Activation energy for the loss of substitutional carbon in $Si_{0.984}C_{0.016}$ grown by solid phase epitaxy

  • Kim, Yong-Jeong;Kim, Tae-Joon;Park, Byungwoo;Song, Jong-Han
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • We studied the synthesis of S $i_{1-x}$ Cx (x=0.016) epitaxial layer using ion implantation and solid phase epitaxy (SPE). The activation energy Ea was obtained for the loss of substitutional carbon using fourier transform-infrared spectroscopy (FTIR) and high-resolution x-ray diffraction (HR-XRD). In FTIR analysis, the integrated peak intensity was used to quantify the loss of carbon atoms from substitutional to interstitial sites during annealing. The substitutional carbon contents in S $i_{0.984}$ $C_{0.016}$ were also measured using HR-XRD. By dynamic simulations of x-ray rocking curves, the fraction of substitutional carbon was obtained. The effects of annealing temperature and time were also studied by comparing vacuum furnace annealing with rapid thermal annealing (RTA))))))

  • PDF

Properties of Fireproof Mortar Using Lightweight Fine Aggregate Using Air Cooling Process Bottom Ash (건식공정 바텀애시 경량 잔골재를 사용한 내화모르타르의 특성)

  • Kim, Myung-Hoon;Namkoong, Yeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.225-226
    • /
    • 2016
  • Bottom ash generated in thermoelectric power plants could be used as substitutional fine aggregate such as pearlite of fireproof mortar due to its lightweight and porosity. Development of substitutional materials is necessary because pearlite has several problems such as production of carbon dioxide during manufacturing process and high price. This study is to confirm the possibility of air cooling process bottom ash for fireproof mortar as substitutional material of pearlite through basic experiment.

  • PDF

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

Substitutional boron doping of carbon materials

  • Ha, Sumin;Choi, Go Bong;Hong, Seungki;Kim, Doo Won;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.27
    • /
    • pp.1-11
    • /
    • 2018
  • A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the $sp^2$ carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.

Electronic Band Structure of N and P Dopants in Diamond

  • 강대복
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.628-634
    • /
    • 1998
  • The properties of the n-type impurities nitrogen and phosphorus in diamond have been investigated by means of electronic band structure calculations within the framework of the semiempirical extended Huckel tight-binding method. For diamond with the nitrogen and phosphorus substitutional impurities, calculated density of states shows the impurity level deep in the band gap. This property can be derived from the substantial <111> relaxation of the impurity and nearest-neighbor carbon atoms, which is associated with the population of an antibonding orbital between them. The passivated donor property of the P-vacancy complex which lies deep in the gap is also discussed.

Effects of Ni addition on continuous cooling transformation behavior of low carbon HSLA steels (저탄소${\cdot}$저합금 강의 연속 냉각 변태에 미치는 Ni의 영향)

  • Kang J. S.;Jun J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.456-459
    • /
    • 2005
  • Continuous cooling transformation behaviors were studied fur low carbon HSLA steels containing three different level $(1\~3\;wt\%)$ of Ni addition. Thermo-mechanical processing (TMP) simulations to construct continuous cooling (CCT) diagram were conducted by using Gleeble system. As cooling rate increased, pearlite, granular bainite, acicular ferrite, bainitic ferrite and lath martensite were transformed from deformed austenite. Fully bainitic microstructure were developed at all cooling rate condition in high Ni containing steel due to hardenability increasing effects of Ni. Ni also influenced the transformation kinetics. At the slowest cooling rate of $0.3^{\circ}C/s$, transformation delayed with decreasing Ni contents because of the diffusion of substitutional alloy elements. However, cooling rate slightly increased to $1^{\circ}C/s$, transformation kinetics accelerated with decreasing Ni contents because nucleation of bainite was sluggish due to hardening of residual austenite.

  • PDF

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF

$^{11}B$ Quadrupole Interaction Studies of Boron-doped Graphite Electrode for Lithium Secondary Battery

  • Lee, Youngil;Han, Duk-Young;Lee, Donghoon;Woo, Ae-Ja;Lee, Sam-Hyeon;Kim, Kyung-Han;Lee, Man-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.90-99
    • /
    • 1999
  • Doping of boron atoms in graphite has been well known method to increase the discharge capacity as the negative electrode material for lithium secondary battery. Herein, the boron-doped graphites are prepared by mixing 1, 2.5, 5, and 7 wt. % of boron carbide in carbon during the graphitizing process. The structural states of boron in boron-doped graphites are investigated by solid-state 11B NMR spectroscopy. The resonance lines for substitutional boron atoms are identified as the second order quadrupolar powder pattern with the quardrupole coupling constant, QCC = 3.36(2) MHz. The quantitative analysis of 11B NMR spectra with boron-doped graphite has also been performed via simulation.

  • PDF

Ion Shower Doping Effect in Diamond and Diamond-Like Carbon Films

  • Jin Jang;Chun, Soo-Chul;Park, Kyu-Chang;Kim, Jea-Gak;Moon, Jong-Hyun;Park, Jong-Hyun;Song, Kyo-Jun;Lee, Seung-Min;Oh, Myung-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.34-39
    • /
    • 1995
  • we have studied the possibility of n-type doping in diamond and DLC films. After ion doping of either p-type or n-type, the electrical conductivities were remarkably increased and conductivity activation energies were decreased. The Raman intensity at 1330 cm-1 decreases slightly by ion doping of $7.2\times 10^{16}\; \textrm{cm}^{-2}$. The increase in conductivity by ion doping appears to be arised from the combined effects by substitutional doping and graphitization by ion damage.

  • PDF

Fabrication of Hydrocarbon Membrane based DMFC MEAs with Low Temperature Decal Method (탄화수소계 전해질막과 저온 전사법을 이용한 DMFC용 MEA 제조)

  • Krishnan, N. Nambi;Prabhuram, Joghee;Ha, Heung-Yong;Kim, Soo-Kil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.415-417
    • /
    • 2009
  • A low temperature decal (LTD) transfer method is tried to fabricated hydrocarbon (HC) membrane based MEA. Sandwiched structures of outer ionomer/catalyst/carbon coating/substrate, which had been developed for Nafion membrane, are used for transfer of catalyst to the HC membrane. Performances of the HC MEA before and after 500hr continuous operation are compared and it is found that a severe delamination occurs at the interface between the HC membrane and the catalyst layer, which is the main reason of the low performance and its degradation. The delamination is due probably to the different nature of HC membrane to the Nafion ionomer. A substitutional method, therefore, is suggested to overcome this. In such a way, the outer ionomer process is removed and the low transfer rate of catalyst by skipping the ionomer process is compensated with optimization of other process variables such as transfer time or temperature. The resulting performance is superior to the original LTD method, which can be explained in terms of low resistive components both in ohmic and kinetic.

  • PDF