• Title/Summary/Keyword: substituent effects

Search Result 175, Processing Time 0.019 seconds

Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.857-862
    • /
    • 2011
  • Kinetic studies of the reactions of N-methyl-Y-${\alpha}$-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at $25.0^{\circ}C$. The Hammett plots for substituent X variations in the nucleophiles (log $k_N$ vs ${\sigma}_X$) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log $k_N$ vs $pK_a$) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log $k_N$ vs ${\sigma}_Y$) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant $\rho_{XY}$ values are all negative: $\rho_{XY}$ = -0.32 for X = Y = electron-donating; -0.22 for X = electron-withdrawing and Y = electron-donating; -1.80 for X = electron-donating and Y = electronwithdrawing; -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal ($k_H/k_D$ > 1) for Y = electron-donating, while secondary inverse ($k_H/k_D$ < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-${\alpha}$-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the ${\alpha}$-carbon for Y = electronwithdrawing substituents.

Studies on the Quaternization of Tertiary Amines (III). Kinetics and Mechanism for the Reaction of Substituted ${\beta}$-Phenylethyl Arenesulfonates with Pyridine (차 아민의 4차화 반응에 관한 연구 (제3보). 치환 ${\beta}$-Phenylethyl Arenesulfonate 류와 피리딘의 반응에 관한 반응속도론적 연구)

  • Soo-Dong Yoh;Kyung-A Lee;Sung-Sik Park
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.333-339
    • /
    • 1982
  • Substituent effects of substrate and leaving group for the reaction of substituted ${\beta}$-phenylethyl arenesulfonates with pyridine were determined conductometrically in acetonitrile at 50∼70$^{\circ}$C. The substituent effect in substrate is not so significant than expected, but still the electron donating substituent shows the slight acceleration to give a small negative ${\rho}$ value and Hammett plots show slight curvature on the acting substituents, even though it is not so remarkable than that of benzyl system. These results represent a little bit the favorable bond breaking at the transition state by the electron donating substituents. The effects of leaving group in the arenesulfonates in which the rate constants are decreased by electron donating substituents, while electron withdrawing groups presented the reverse effects. Hammett ${\rho}$ value is significantly smaller than that of p-nitrobenzyl arenesulfonates and thus, the mechanism should be closer to tight $S_N2$ one. Especially 2,5-dichlorobenzenesulfonate was more accelerated than expected at the additivity of substituents. This facts showed that dichlorobenzenesulfonate anion is more stabilized by the great electron withdrawing substituents at transition state.

  • PDF

Determination of Reactivities by MO Theory (XIII). MO Studies on Nonlinear Hammett Correlation of Benzyl Systems (MO 理論에 依한 反應性의 決定 (第13報). 벤질系의 非線型 Hammett 關係에 관한 分子軌道論的 硏究)

  • Ikchoon Lee;Keun Bae Rhyu;Byung Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.277-285
    • /
    • 1979
  • CNDO/2 calculations on $XC_6H_4CH_2Cl,\;where\;X = H,\;p-CH_3,\;p-NH_2\;and\;p-NO_2$, and on benzyl radicals, cations and anions have been carried out in order to investigate nonlinear Hammett behavior. Main conclusions reached are: 1. Benzyl chloride exhibits borderline behavior due to ${\sigma}-{\pi}$ conjugation between C-Cl bond and the ring-system. 2. The extent of mutual conjugation can be judged by $\pi$-charge and bond alternation and interfrontier level separation narrowing effects. 3.The electron donating para substituent reduces the HOMO AO coefficient of the benzylic carbon, while the electron withdrawing para substituent reduces the LUMO AO coefficient of the benzylic carbon.

  • PDF

Reactions of 4-Nitrophenyl 2-Thiophenecarboxylates with R2NH/R2NH2+ in 20 mol % DMSO (aq). Effects of 5-Thienyl Substituent and Base Strength

  • Pyun, Sang Yong;Cho, Bong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2036-2040
    • /
    • 2013
  • Reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a-e) with $R_2NH/R_2NH{_2}^+$ in 20 mol % DMSO (aq) have been studied kinetically. The $2^{nd}$ order kinetics, ${\beta}_{nuc}$ = 0.88-0.98, and linear Hammett and Yukawa-Tsuno plots observed for these reactions indicate an addition-elimination mechanism in which the $2^{nd}$ step is rate limiting. The ${\beta}_{nuc}$ value increased with a stronger electron-withdrawing 5-thienyl substituent, the Hammett plots are linear except for X = MeO, and Yukawa-Tsuno plots are linear with ${\rho}$ = 0.79-1.32 and r = 0.28-0.93, respectively. The ${\rho}$ value increased and r value decreased with a stronger nucleophile, indicating an increase in the electron density at the C=O bond and a decrease in the resonance demand. These results have been interpreted with enhanced N-C bond formation in the transition state with the reactivity increase.

Cinnamic Acid Derivatives IV, The Kinetics and Mechanism of the Hydrolysis of Cinnamylidene aniline Derivatives (신남산 유도체 Ⅳ, Cinnamylidene anilin 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구)

  • Lee, Gi-Chang;Park, Su-In;Hwang, Yong-Hyeon;Lee, Gwang-Il;Choe, Bong-Jong;Jeong, Deok-Chae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • The kinetic of hydrolysis for cinnamylidene aniline derivatives has been investigated by ultraviolet spectrophotometry in 20% (v/v) dioxane - $H_2O$ at $25^{\circ}C$. A rate equation which can be applied over wide pH range was obtained. The substituent effects on cinnamylidene aniline derivatives were studied and the hydrolysis was facilitated by electron attracting group. Final products of the hydrolysis were cinnamaldehyde and aniline. From the rate equation, substituent effect and final products, the hydrolysis of cinnamylidene aniline derivatives was initiated by the neutral molecule of $H_2O$ which does not dissociate at below pH 9.0${\sim}$12.0, but proceeded by the hydrogen ion at above pH 5.0${\sim}$9.0.

Cinnamic Acid Derivatives III, The Kinetics and Mechanism of the Nucleophilic Addition of Thioglycolic Acid to Benzalacetophenone Derivatives (신남산 유도체III, Benzalacetophenone 유도체에 대한 Thioglycolic acid의 친핵성 첨가반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Yong-Hyun;Park, Eun-Kyung;Ryu, Jung-Wook;Lee, Kwang-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.33-40
    • /
    • 1990
  • The Kinetics of the addition of benzalacetophenone derivatives was investigated by ultraviolet spectrophotometery in 5% dioxane $H_2O$ at $50^{\circ}C$. A rate equation was obtained in wide range of pH. The substituent effects on benzalacetophenone derivatives were studied, and addition were facilitated by electron attracting groups. The final product was benzalacetophenone-${\beta}$-thioglycolic acid synthesized by the addition of thioglycolic acid to benzalacetophenone. On the base of the rate equation, substituent effect, general base effect and final product, the plausible addition mechanism was proposed: Below pH 9.0, only neutral thioglycolic acid molecule was added to the carbon-carbon double bond, and in the range of pH $9.0{\sim}11.0$, neutral thioglycolic acid molecule and thioglycolic acid anion competitively attacted the double bond. By contrast, above pH 11.0, the reaction was dependent upon only the addition of thioglycolic acid anion.

Benzoic acid II. The Kinetics and Mechanism of the Hydrolysis to 2-Furyl Chalcone Derivatives (벤조산 유도체 II. Furyl Chalcone 유도체의 가수분해 반응메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Yong-Hyun;Ryu, Wan-Ho;Yang, Cheon-Hoi;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 1993
  • The hydrolysis kinetics of 2-furyl chalcone derivatives $[I]{\sim}[V]$ was investigated by ultraviolet spectrophotometery in 30% dioxane-$H_{2}O$ at $25^{\circ}C$ and the structure of these compounds were ascertained by means of ultraviolet, infrared and NMR spectra. The rate equations which were applied over a wide pH range(pH $1.0{\sim}12.0$) were obtained. The substituent effects on 2-furyl chalcone derivatives $[I]{\sim}[V]$ were studied, and the hydrolysis were facilitated by the electron attrecting groups. On the basis of the rate equation, substituent effect, general base effect and final product. the plausible hydrolysis mechaism was proposed: Below pH 4.0, it was only proportional to concentration of hydronium ion, at pH $4.0{\sim}9.0$, neutral $H_{2}O$ molecule competitively attacked on the double bond. By contrast, above pH 9.0, it was proportional to concentration of hydroxide ion.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4304-4308
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots for substituent X variations in the nucleophiles are discrete with a break region between 4-Me and H, while the Hammett plots (log $k_2$ vs ${\sigma}_Z$) for substituent Z variations in the leaving groups are linear. The sign of the cross-interaction constant (${\rho}_{XZ}$) is positive for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ (= 2.54) value is observed with the weakly basic nucleophiles compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = 0.17). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a stepwise with a rate-limiting leaving group expulsion from the intermediate involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles.

Substituent Effects for the Menschutkin-Type Reaction of Substituted 2-Phenylethyl arenesulfonates with Substituted Pyridines (치환 2-Phenylethyl arenesulfonate 류와 치환 피리딘류의 Menschutkin 형 반응에 관한 치환기 효과)

  • Soo-Dong Yoh;Joong Hyup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.413-418
    • /
    • 1989
  • The rates for the reaction of substituted 2-phenylethyl tosylates with substituted pyridines were measured in acetonitrile and that of 2-PNS with substituted pyridines were investigated in both acetonitrile and methanol. The substitutent effect was accelerated by an electron-donating substituent on both substrate and nucleophile. Results showed that More O'Ferrall and quantum mechanical model of predicting transition state structure suggest the reaction proceeds via an $S_N2$ mechanism, in which bond-breaking is more advanced than bond-formation. Transition state variation predicted with the quantum mechanical model is consistent with the experimental results, whereas the predictions provided by the More O'Ferrall plots is found to be inconsistent in leaving group. In the reaction of 2-PNS, the rate constants in acetonitrile were larger than that in methanol.

  • PDF

Substituent Effects on the Wallach Rearrangement of 4'-Halogenated Azoxybenzenes in Conc. Sulfuric Acid : Reaction Mechanism and Linear Free Energy Relationship (황산 수용액내에서 4'-Halogenated Azoxybenzenes의 Wallach Rearrangement 반응에 대한 치환체효과 : 반응메카니즘과 Linear Free Energy Relationship)

  • Keum Sam-Rok;Lee Hyo-Il
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.148-153
    • /
    • 1993
  • The Wallach rearrangement of 4'-halogenated azoxybenzenes in strong sulfuric acid was reinvestigated by UV-Vis spectrophotometric method. Interestingly an excellent linearity $(logk_{obs}=-0.61\;{\sigma}_R{^+} -3.29,\;{\gamma = 0.998)$ was obtained on plotting log (rate) vs. substituent constant, ${\sigma}_R{^+}$, which is known as the Pi delocalization parameter. Thus B-H mechanism via a charged intermediate $(DC^{++})$, which can be largely stabilized by resonance, is far more favored for the Wallach rearrangement.

  • PDF