• Title/Summary/Keyword: substance P-LI

Search Result 16, Processing Time 0.026 seconds

Capsaicinoids-induced Neurotoxic Desensitization in Guinea Pig: Antinociception and Loss of Substance P-like Immunoreactivity from Peripheral Sensory Nerve Endings in Bronchi

  • Jung, Yi-Sook;Lee, Buyean;Shin, Hwa-Sup;Kong, Jae-Yang;Park, No-Sang;Cho, Tai-Soon
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.256-259
    • /
    • 1995
  • Antinociceptive and desensitizing effects of systemically administered capsaicinoids (capsaicin and KR25018) were investigated in guinea pig. Nociceptive sensitivity to chemical stimulus was examined to test sensory function, and the content of substance P-like immunorractivity (SP-LI) in bronchi was determined as a peripheral marker of capsaicin-sensitive primary afferent neurons. Guinea pigs were pretreated s.c. with several doses of capsaicin (1,2.5,5, 10 mg/kg) or KR25018 (1, 2.5, 5, 10 mg/kg) one week prior to the experiments. Frequency of eye wiping was significantly decreased by capsaicin and KR25018 in a pretreatment dosedependent manner. In capsaicin- or KR25018-pretreated guinea pigs, there was a significant loss of SP-LI in bronchial tissue extracts. In summary, a newly synthesized capsaicin analogue H725018 exhibited antinociceptive effect against chemical stimulus in guinea pig, with comparable potency to capsaicin. This desensitizing activity of capsaicin or KR25018 might be related to the loss of SP-LI in peripheral afferent nerves.

  • PDF

Effect of Biofilm Formation on Soil Sorbed Naphthalene Degradation (Biofilm 생성이 토양흡착 나프탈렌 분해에 미치는 영향)

  • Li, Guang-Chun;Chung, Seon-Yong;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • Naphthalene-degrading bacteria Pseudomonas aeruginosa CZ6 isolated from contaminated soil can adhere to crystal naphthalene and produce extracellular polymeric substance. LB, YM and MSM medium were used as culture mediums to investigate the formation of biofilm. Biofilm was developed the most in LB medium by Pseudomonas aeruginosa CZ6. In the culture, strain CZ6 growth was rarely affected by naphthalene concentration. Optimal culture condition was $30^{\circ}C$ and pH 7 at 0.10% substrate and 150 rpm shaking. The effect of culture medium on naphthalene degradation in the two soil slurry system was evaluated. The initial degradation rate of naphthalene was highest in the MSM medium of soil slurry. However, the sorbed naphthalene was rapidly degraded at the LB medium when naphthalene availability in liquid was limited. The results of this study suggest that biofilm formation and extracellular polymeric substance production increased bioavailability of soil sorbed naphthalene.

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Dyeing Behaviors of Berberine, Palmatine, and Dye Extracted from Phellodendron Bark on Silk Fabric

  • Ahn, Cheunsoon;Yoo, Hye Ja;Li, Longchun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.12
    • /
    • pp.1257-1269
    • /
    • 2012
  • The dyeing behaviors of berberine chloride, palmatine chloride hydrate, and Phellodendron bark extract on silk fabric were investigated to evaluate palmatine as another chromophoric substance of Phellodendron bark. The dyeing conditions were composed of combinations of pH (3, 5, 7, 9), temperature (10, 30, 55, $80^{\circ}C$), and time (10, 30, 60 min). The results indicate that palmatine was comparable to berberine in the dyeing behaviors tested for this study and the results were statistically significant. The dye exhaustion and dye uptake of palmatine-CH were slightly lower than berberine-C, which however were not statistically significant. Similar to berberine-C, palmatine-CH favored a pH 7 condition for both dye exhaustion and dye uptake. However, palmatine-CH favors a higher dyeing temperature and longer dyeing time than berberine-C for superior dyeing results.

Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu

  • Min Li;Tao Li;Jia Zheng;Zongwei Qiao;Kaizheng Zhang;Huibo Luo;Wei Zou
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1337-1350
    • /
    • 2023
  • Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35℃, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.

PPTA/PVDF blend membrane integrated process for treatment of spunlace nonwoven wastewater

  • Li, Hongbin;Shi, Wenying;Qin, Longwei;Zhu, Hongying;Du, Qiyun;Su, Yuheng;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • Hydrophilic and high modulus PPTA molecules were incorporated into PVDF matrix via the in situ polymerization of PPD and TPC in PVDF solution. PPTA/PVDF/NWF blend membrane was prepared through the immersion precipitation phase inversion method and nonwoven coating technique. The membrane integrated technology including PPTA/PVDF/NWF blend membrane and reverse osmosis (RO) membrane was employed to treat the polyester/viscose spunlace nonwoven process wastewater. During the consecutive running of six months, the effects of membrane integrated technology on the COD, ammonia nitrogen, suspended substance and pH value of water were studied. The results showed that the removal rate of COD, ammonia nitrogen and suspended substance filtered by PPTA/PVDF blend membrane was kept above 90%. The pH value of the permeate water was about 7.1 and the relative water flux of blend membrane remained above 90%. After the deep treatment of RO membrane, the permeate water quality can meet the water circulation requirement of spunlace process.

Experimental Study Trends on the Acupuncture Moxibustion Treatment for Visceral Hypersensitivity: Based on the Data of PubMed (내장감각과민의 침구 치료에 대한 실험연구 현황: PubMed를 중심으로)

  • Han, Chang Woo;Choi, Jun-Yong;Park, Seong Ha;Kim, So Yeon
    • Korean Journal of Acupuncture
    • /
    • v.36 no.2
    • /
    • pp.93-103
    • /
    • 2019
  • Objectives : The aim of this study is to review the current trends in experimental studies on the acupuncture moxibustion treatment for visceral hypersensitivity. Methods : PubMed was searched for experimental studies about visceral hypersensitivity and acupuncture/moxibustion. Data were extracted and tabulated from the selected articles about experimental method, intervention, result and mechanism. Results : Total 23 articles were reviewed. Chronic visceral hypersensitivity animal model was applied in 17 studies (74%). Visceral hypersensitivity was measured by abdominal withdrawal reflex scoring or/and abdominal electromyogram. Acupoints like ST25, ST36, ST37, BL25, LI11, BL32 and PC6 were treated by electroacupuncture or moxibustion. All articles reported that electroacupuncture or moxibustion treatment is significantly effective in reducing visceral hypersensitivity. Treatment mechanisms were studied, related to mast cell, serotonin (5-HT) and receptor (5-HT3R and 5-HT4R), substance P (SP), vasoactive intestinal polypeptide (VIP), c-fos positive cell, corticotropin-releasing hormone (CRH), purinergic 2X (P2X)2, P2X3, P2X4, P2X7, N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2B), prokinectin (PK) 1 and PK2. Conclusions : Evidences on acupuncture/moxibustion treatment for visceral hypersensitivity in animal studies warrant more research on effective acupoins, electro-acupuncture methods and treatment durations.

Quality Characteristics of Regional Traditional and Commercial Soy Sauce (Ganjang) (지역별 재래식 간장과 시판 개량식 간장의 품질특성 분석)

  • Kim, Seulki;Park, Sun-Young;Hong, Sangpil;Lim, Sang-Dong
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Purpose: Physicochemical and microbiological qualities were investigated to compare quality characteristics of traditional with commercial soy sauce (Ganjang). Methods: Nineteen traditional products were collected from six provinces and three commercial products were purchased in domestic markets. The proximate composition, inorganic substance contents, viable bacteria, and chromaticity of the soy sauces were measured. Results: Although concentrations of crude fat and protein were not significantly different between traditional and commercial Ganjang, the moisture concentration of commercial soy sauce was significantly higher than in traditional Ganjang (p<0.05). However, the amount of ash in commercial soy sauce was significantly lower than in traditional Ganjang (p<0.05). Total nitrogen concentrations of traditional and commercial Ganjang were 0.50-1.59% and 0.86-1.26%, respectively. Concentrations of Na, Mg, K, Ca, Li, B, Fe, and Sr in traditional Ganjang were significantly higher than in the commercial products (p<0.05). The number of total bacteria in traditional and commercial Ganjang were $3.3{\times}10^1-6.4{\times}10^7CFU/mL$ and $5.5{\times}10^1-2.0{\times}10^3CFU/mL$, respectively. Bacillus cereus were below 10,000 CFU/mL in all samples, and Staphylococcus aureus was not detected. Fungi was not detected in 13 samples of traditional Ganjang and the three samples of commercial soy sauce. Although lightness, redness, and yellowness were not significantly different among the Ganjang, G10 was had the highest values (p<0.05). Conclusion: This research provided information about the quality characteristics of traditional and commercial Ganjang.

Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

  • Huh, Chang Ki;Hwang, Tae Yean
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not $H_2O_2$. The molecular weights of the antifungal substances were ${\leq}3,000Da$. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.

Synthesis of Dimer Acid Methyl Ester Using Base-treated Montmorillonite (염기 처리된 montmorillonite를 이용한 다이머산 메틸에스테르의 합성)

  • Yuk, Jeong Suk;Shin, Jihoon;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2019
  • In this study, we demonstrate the effects of the acidic properties of montmorillonite (MMT), which is commonly used as a catalyst, on the conversion and selectivity of the dimer acid methyl ester (DAME) synthesis. We synthesize DAME by the dimerization of conjugated linoleic acid methyl ester (CLAME) and oleic acid methyl ester using MMT KSF. Incidentally, trimer acid methyl ester was formed as a by-product during the DAME synthesis. There is a necessity to adequately adjust the strength and quantity of the acid site to control the selectivity of DAME. Therefore, we vary the pH of the MMT acid by using various metal hydroxides. The purpose of this study is to increase the yield of monocyclic dimer acid methyl ester, which is a substance with adequate physical properties for industrial applications (e.g., lubricant and adhesive, etc.), using a heterogeneous catalyst. We report the dimerization of fatty acid methyl ester by using base treated-KSF, and apply it to conjugated soybean oil methyl ester. Then, we transmute the acid site properties of KSF, such as pH of 5 wt.% slurry KSF and various alkali metals (Li, Na, K, Ca). Characterization of base treated-KSF using a pH meter, x-ray diffraction, inductively coupled plasma-atomic emission spectrometer, Brunauer-Emmett-Teller surface analysis, and temperature-programmed desorption. We conduct an analysis of CLAME and DAME using nuclear magnetic resonance spectroscopy, gas chromatography, and gel permeation chromatography. Through these experiments, we demonstrate the effects of the acidic properties of KSF on the conversion and selectivity of the DAME synthesis, and evaluate its industrial potential by application to waste vegetable oil.