서브시퀀스 매칭은 데이터 마이닝 분야에서 중요한 연산 중의 하나이다. 기존의 서브시퀀스 매칭 알고리즘들은 하나의 인덱스만을 사용하여 검색을 수행하며, 인덱스를 생성하기 위하여 데이터 시퀀스로부터 추출한 윈도우의 크기와 질의 시퀀스의 길이 간의 차이가 커질수록 검색 성능이 급격히 저하된다. 본 논문에서는 이러한 문제점을 해결하기 위하여 인덱스 보간법에 기반한 새로운 서브시퀀스 매칭 기법을 제안한다. 인덱스 보간법이란 하나 이상의 인덱스를 구축하고 주어진 질의 시퀀스의 길이에 따라 적절한 인덱스를 선택하여 검색을 수행하는 기법이다. 본 논문에서는 먼저 사전 실험을 통하여 서브시퀀스 매칭을 수행하는 데에 있어 질의 시퀀스 길이와 윈도우 크기 간의 차이로 인한 성능의 변화를 관찰하고, 이 관찰을 통하여 물리적 데이터베이스 설계 관점에서 질의 시퀀스의 길이 분포에 따른 검색 비용 공식을 산출한다. 다음에, 윈도우 크기 효과에 의한 성능 저하를 개선하기 위해 인덱스 보간법에 기반한 새로운 검색 기법을 제안한다. 또한, 검색 비용 공식에 기반하여 제안된 검색 기법의 성능을 최적화할 수 있도록 다수의 인덱스를 구성하는 알고리즘을 제시한다. 마지막으로, 실제 데이터와 합성 데이터를 이용한 여러 가지 실험을 통하여 제안된 기법의 우수성을 검증한다.
This paper deals with the subsequence searching problem under time-warping. Our work is motivated by the observation that subsequence searches slow down quadratically as the average length of data sequences increases. To resolve this problem, the Segment-Based Approach for Subsequence Searches (SBASS) is proposed. The SBASS divides data and query sequences into a series of segments, and retrieves all data subsequences. Our segmentation scheme allows segments to have different lengths; thus we employ the time warping distance as a similarity measure for each segment pair. For efficient retrieval of similar subsequences, we extract feature vectors from all data segments exploiting their monotonically changing properties, and build a spatial index using feature vectors. The effectiveness of our approach is verified through extensive experiments.
유사 서브 시퀀스 검색은 분자 생물학 분야에서 사용되는 매우 중요한 연산이다. 본 논문에서는 대규모 DNA 시퀀스 데이타베이스를 처리 대상으로 하여 효율성과 정확도를 보장하는 실용적인 유사 서브 시퀀스 검색 기법을 제안한다. 제안된 기법은 이진 트라이를 인덱스 구조로 채택하여 DNA 시퀀스로부터 추출한 일정 길이의 윈도우 서브 시퀀스를 인덱싱 대상으로 한다. 유사 서브 시퀀스 검색 알고리즘은 기본적으로 다이나믹 프로그래밍 기법에 근거하여 이진 트라이를 루트로부터 너비 우선(breadth-first)방식으로 운행하며, 경로 상에 존재하는 모든 유사 서브 시퀀스를 검색해 낸다. 그러나 질의 길이가 윈도우의 크기보다 큰 일반적인 경우에는 질의를 일정 길이의 서브 시퀀스로 분해하여 각 서브 시퀀스에 대하여 유사 서브 시퀀스 검색을 수행한 후, 후처리 과정에 의하여 정확도에 손상 없이 이들 결과를 결합하는 분할 질의 처리 방식을 채택한다. 제안된 기법의 우수성을 검증하기 위하여, 실험을 통한 성능 평가를 수행한다. 실험 결과에 의하면 제안된 인덱스 기법은 접미어 트리에 비하여 약 40%의 작은 저장 공간을 가지고도 약 4-17배의 검색 성능의 개선 효과를 나타낸다. 또한 분할 질의 처리 방식에 의한 유사 서브 시퀀스 검색 알고리즘은 질의 길이가 긴 경우에도 효율적으로 동작하여 Suffix와 Smith-Waterman 알고리즘에 비하여 각각 수배에서 수십배의 검색 성능의 개선 효과를 나타낸다.
본 논문에서는 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 방법에 대하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해 주는 변환이다. 접두어 질의 기법(prefix-querying method)는 착오 기각 없이 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 인덱스를 이용한 최초의 방식이다. 이 방법은 사용자가 질의를 편리하게 작성하도록 하기 위하여 기본 거리함수로서 $L_{\infty}$를 사용한다. 본 논문에서는 $L_{\infty}$ 대신 타임 워핑 하의 시계열 서브시퀀스 매칭에서 기본 거리 함수로서 가장 널리 사용되는 $L_1$을 적용할 수 있도록 접두어 질의를 확장한다. 또한, 제안된 기법으로 타임 워핑 하의 시계열 서브시퀀스 매칭을 수행하는 경우 착오 기각(false dismissal)이 발생하지 않음을 이론적으로 증명한다. 다양한 실험을 통한 성능 평가를 통하여 본 연구에서 제시하는 기법의 우수성을 검증한다. 실험 결과에 의하면, 제안된 기법은 가장 좋은 성능을 보이는 기존의 기법과 비교하여 매우 뛰어난 성능 개선 효과를 보이는 것으로 나타났다.
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이터베이스로부터 검색하는 연산이며, 인덱스 검색 과정과 후처리 과정으로 구성된다. 본 논문에서는 서브시퀀스 매칭을 위한 후처리 과정의 최적화 방안에 관하여 논의한다. 기존의 서브시퀀스 매칭 기법들의 후처리 과정에서 발생하는 공통적인 문제점은 인덱스 검색 과정에서 각 후보 서브시퀀스가 반환될 때마다 이들이 최종 결과에 포함되는가에 대한 여부를 판별하기 위하여 질의 시퀀스와 비교한다는 것이다. 이러한 처리 방식은 후보 서브시퀀스들을 포함하는 동일한 시퀀스를 디스크로부터 여러 번 액세스되도록 할 뿐만 아니라 동일한 후보 서브시퀀스를 질의 시퀀스와 여러 번 비교하도록 한다. 따라서 이러한 중복 작업은 서브시퀀스 매칭의 처리 성능을 심각하게 저하시키는 중요한 원인이 된다. 본 연구에서는 이러한 문제점을 해결하는 새로운 최적의 기법을 제안한다. 제안된 기법은 인덱스 검색 과정에서 반환되는 모든 후보 서브시퀀스들을 이진 탐색 트리 내에 저장하고, 인덱스 검색 과정이 완료된 후에 일괄 처리 방식으로 후처리 작업을 수행한다. 이와 같은 일괄 처리 방식을 채택함으로써 제안된 기법은 위에서 언급한 중복 작업을 완전히 제거할 수 있다. 제안된 기법의 성능 개선 효과를 검증하기 위하여 실제 주식 데이터를 위한 다양한 실험을 수행한다. 실험 결과에 의하면, 제안된 기법은 기존의 기법과 비교하여 55배에서 156배까지의 성능 개선 효과가 있는 것으로 나타났다.
본 논문은 우선순위 큐와 접미어 트리로 색인 구조를 생성한 후. 이미지 시퀀스 데이터베이스에서 다차원 타임 워핑 거리 함수를 이용하여 유사한 이미지 서브시퀀스를 신속하고 정확하게 검색할 수 있는 방법을 제안한다. 본 논문에서 제안된 방법은 사전에 정의된 중요도에 따라 선별된 이미지 시퀀스로 구성된 우선순위 큐 색인의 이미지 서브시퀀스에 대한 유사성 거리 계산을 첫 단계로 시행하여 유사한 서브시퀀스집합을 얻고 만족할 결과를 얻지 못했을 경우에는 두 번째 단계로 나머지 유사 서브시퀀스에 대해 디스크 기반의 접미어 트리를 색인 구조체로 하여 유사한 서브시퀀스를 검색하는 것이다. 하한 거리 함수를 활용하여 질의 이미지 시퀀스와 유사한 이미지 서브시퀀스를 검색하는 과정에서 생성 가능한 오류를 방지 하면서 동시에 비 유사 이미지 서브시퀀스를 제거하도록 한다.
시계열의 예측에 대한 문제는 오랫동안 많은 연구자들의 연구의 대상이었으며 예측을 위한 많은 방법이 제안되었다. 본 논문에서는 은닉 마코프 모델(Hidden Markov Model)과 우도(likelihood)를 사용한 유사도 검색을 통하여 향후 시계열 데이터의 운행 방향을 예측하는 방법을 제안한다. 이전에 기록된 시계열 데이터에서 질의 시퀸스(sequence)와 유사한 부분을 검색하고 유사 부분의 서브 시퀸스를 사용하여 시계열을 예측하는 방법이다. 먼저 주어진 질의 시퀸스에 대한 은닉 마코프 모델을 작성한다. 그리고 시계열 데이터에서 순차적으로 일정 길이의 서브 시퀸스를 추출하고 추출된 서브 시퀸스와 작성된 은닉 마코프 모델과의 우도를 계산한다. 시계열 데이터로부터 추출된 서브 시퀸스 중에서 우도가 가장 높은 시퀸스를 유사 시퀸스로 결정하고 결정된 부분 이후의 값을 추출하여 질의 시퀸스 이후의 예측 값을 추정한다. 실험 결과 예측 값과 실제 값이 상당한 유사성을 나타내었다. 제안된 방법의 유효성은 코스피(KOSPI) 종합주가지수를 대상으로 실험하여 검증한다.
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이타베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭 처리의 성능 병목을 파악하고, 이를 해결함으로써 전체 서브시퀀스 매칭의 성능을 크게 개선하는 방안에 관하여 논의한다. 먼저, 사전 실험을 통하여 전체 서브시퀀스 매칭의 처리 시간 중 인덱스 검색 단계와 후처리 단계에서 디스크 액세스 시간 및 CPU 처리 시간이 차지하는 비중을 분석한다. 이를 바탕으로 후처리 단계가 서브시퀀스 매칭의 성능 병목이며, 후처리 단계의 최적화가 기존의 서브시퀀스 매칭 기법들이 간과한 매우 중요한 이슈임을 지적한다. 이러한 서브시퀀스 매칭의 성능 병목을 해결하기 위하여 후처리 단계를 최적으로 처리할 수 있는 간단하면서도 매우 효과적인 기법을 제안한다. 제안된 기법은 후처리 단계에서 후보 서브시퀀스들이 질의 시퀀스와 실제로 유사한가를 판단하는 순서를 조정함으로써 기존의 후처리 단계의 처리에서 발생하는 많은 디스크 액세스의 중복과 CPU 처리의 중복을 완전히 제거한 수 있다 제안된 기법이 착오 기각을 발생시키지 않음과 후처리 단계를 처리하기 위한 최적의 기법임을 이론적으로 증명한다. 또한, 실제 데이타와 생성 데이타를 이용한 다양한 실험들을 통하여 제안된 기법의 성능 개선 효과를 정량적으로 검증한다. 실험 결과에 의하면, 제안된 기법은 기존 기법의 후처리 단계 수행 시간을 실제 주식 데이타를 이용한 실험의 경우 ,3.91 배에서 9.42배까지, 대규모의 생성 데이터를 이용한 실험의 경우 4.97 배에서 5.61배까지 개선시키는 것으로 나타났다. 또한, 제안된 기법을 채택함으로써 전체 서브시퀀스 매칭 처리 시간의 90%에 이르던 후처리 단계의 비중을 70%이하로 내릴 수 있었다. 이것은 제안된 기법이 서브시퀀스 매칭의 성능 병목을 성공적으로 해결하였음을 보여주는 것이다. 이 견과, 제안된 기법은 전체 서브시퀀tm 매칭의 성능을 실제 주식 데이타를 사용한 실험의 경우 3.05 배에서 5.60 배까지, 대규모의 생성 데이타를 이용한 실험의 경우 3.68 배에서 4.21 배까지 개선시킬 수 있었다.
모양 기반 검색이란 실제 요소 값과 관계없이 질의 시퀀스와 유사한 모양을 갖는 시퀀스(서브시퀀스)를 데이터베이스 내에서 검색하여 내는 연산이다. 본 논문에서는 시계열 데이터베이스에서의 모양 기반 검색을 위한 유연성 있는 새로운 유사 모델을 정의하고, 이 유사 모델을 지원하기 위한 인덱싱 및 질의 처리 방안을 제시한다. 제안된 유사 모델에서는 정규화, 이동 평균, 타임 워핑 등 다양한 변환을 지원한다. 특히 최종 유사 정도를 계산하기 위하여 사용되는$L_p$거리 함수론 사용자가 임의로 지정하도록 함으로써 응용에서 선호하는 유사 모델을 반영할 수 있다. 또한 이러한 모양 기반 검색을 효과적으로 지원하기 위한 압축된 서브시퀀스 트리 구조를 제안하고, 이를 기반으로 하는 효율적인 질의 처리 기법을 제시한다. 실험 결과에 의하면 제안된 기법은 진의 시퀀스와 모양이 유사한 서브시퀀스들을 사용자에 의하여 선택된 거리 함수를 사용하여 성공적으로 검색할 뿐 아니라, 순차 검색과 비교하여 거리 함수 선택에 따라 수 십배에서 수 백배까지의 성능 개선 효과를 갖는 것으로 나타났다.
2001년 비트토렌트 프로토콜이 설계된 후로 음악, 영화, 소프트웨어 등 모든 것을 다운로드할 수 있게 되었다. 이를 통해 저작권이 있는 파일이 무분별하게 공유가 되었고 저작권자들은 많은 피해를 입었다. 이 문제를 해결하기 위해 국가에서는 관련법을 제정하였고 ISP는 불법 사이트를 차단하였다. 이러한 노력들에도 불구하고 pirate bay와 같은 불법 사이트들은 도메인을 바꾸는 등 쉽게 사이트를 재오픈하고 있다. 이에 우리는 재오픈된 불법 사이트를 쉽게 탐지하는 기술을 제안한다. 이 자동화 기술은 구글 검색엔진을 이용하여 도메인을 수집하고, 최장공통부분수열(LCS) 알고리즘을 이용하여 기존 웹페이지 태그와 검색된 웹페이지 태그를 비교, 유사도를 측정한다. 실험을 위해 총 2,383개의 검색 결과를 구글 검색으로 얻었다. LCS 유사도 알고리즘을 적용하여 검사한 결과 44개의 해적 사이트를 탐지하였다. 또한 해외 불법 사이트에 적용한 결과 805개 검색 도메인에서 23개의 불법 사이트를 탐지하였다. 이를 통해 제안된 탐지 자동화 기술을 사용한다면 불법 사이트가 재 오픈을 하더라도 쉽게 탐지할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.