기존의 서브시퀀스 매칭 방법은 검색을 효율적으로 수행하기 위한 인덱스 구성 방법에 대하여 연구하였으며, 서브시퀀스 매칭 방법의 효과성 평가를 고려하지 않았다. 본 논문은 서브시퀀스 매칭 방법의 효과성에 대하여 고려하였으며, 서브시퀀스 매칭 방법의 효과성을 평가 할 수 있는 2가지 척도를 제안한다. 한국 주식 데이터와 5가지 서브시퀀스 매칭 방법에 대하여 제안된 효과성 측정 방안을 적용하였으며, 그 결과를 분석하였다. 실험 결과, 정규화를 지원하는 서브시퀀스 매칭 방법과 스케일링과 쉬프팅 변환을 지원하는 서브시퀀스 매칭 방법이 상대적으로 효과적인 서브시퀀스를 검색하였다.
본 논문에서는 선형 추세 제거 서브시퀀스 매칭을 정의하고, 이를 효율적으로 수행하기 위한 인덱스 기반 해결책을 제안한다. 이를 위해, 먼저 윈도우 자체의 선형 추세가 아닌 해당 윈도우를 포함하는 서브시퀀스의 선형 추세를 제거하여 얻은 새로운 윈도우인 LD-윈도우 개념을 제시한다. 다음으로, LD-윈도우를 이용하여 제안하는 인덱스 기반 해결책의 이론적 근거인 하한 조건을 제시하고, 이를 정형적으로 증명한다. 이러한 하한 조건에 기반하여, 본 논문에서는 또한 인덱스 구성 및 서브시퀀스 매칭 알고리즘을 각각 제안한다. 마지막으로, 실험을 통해 제안하는 인덱스 기반 해결책의 우수성을 입증한다.
This paper discusses an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, we suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multi-dimensional index using a feature vector as indexing attributes. For query precessing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verily the superiority of our method, we perform extensive experiments. The results reseal that our method achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.
본 논문에서는 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 방법에 대하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해 주는 변환이다. 접두어 질의 기법(prefix-querying method)는 착오 기각 없이 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 인덱스를 이용한 최초의 방식이다. 이 방법은 사용자가 질의를 편리하게 작성하도록 하기 위하여 기본 거리함수로서 $L_{\infty}$를 사용한다. 본 논문에서는 $L_{\infty}$ 대신 타임 워핑 하의 시계열 서브시퀀스 매칭에서 기본 거리 함수로서 가장 널리 사용되는 $L_1$을 적용할 수 있도록 접두어 질의를 확장한다. 또한, 제안된 기법으로 타임 워핑 하의 시계열 서브시퀀스 매칭을 수행하는 경우 착오 기각(false dismissal)이 발생하지 않음을 이론적으로 증명한다. 다양한 실험을 통한 성능 평가를 통하여 본 연구에서 제시하는 기법의 우수성을 검증한다. 실험 결과에 의하면, 제안된 기법은 가장 좋은 성능을 보이는 기존의 기법과 비교하여 매우 뛰어난 성능 개선 효과를 보이는 것으로 나타났다.
시계열 데이터베이스란 객체의 변화되는 값들의 연속으로 구성된 데이터 시퀀스들의 집합이며, 타임 워핑 하의 서브시퀀스 매칭은 주어진 질의 시퀀스와 타임 워핑 거리가 허용치 이하인 서브시퀀스들을 시계열 데이터베이스로부터 찾아내는 연산이다. 본 논문에서는 먼저 타임 워핑 하의 시퀀스 매칭을 지원하는 기존의 기법들의 특성을 지적하고, 이들을 전체매칭 및 서브시퀀스 매칭에 각각 적용하는 방안에 관하여 논의한다. 또한, 실제 주식 데이터를 이용한 다양한 실험을 통하여 이들에 대한 정량적인 성능평가를 수행한다. 타임 워핑 하의 서브시퀀스 매칭을 위한 기존 기법들의 성능을 상호 비교한 연구 결과는 아직 제시된 바 없다. 따라서 본 연구 결과는 이러한 세 가지 기법들에 대한 성능을 제시하는 좋은 자료로서 사용될 수 있을 것이다.
정규화 변환은 시계열 시퀀스를 구성하는 엔트리들의 전체적인 패턴을 분석하는데 매우 유용하다. 본 논문에서는 단일 색인을 사용한 정규화 변환 지원 서브시퀀스 매칭 방법을 제안한다. 기존의 정규화 변환 지원 서브시퀀스 매칭 방법은 다양한 길이의 질의 시퀀스를 지원하기 위하여 여러 개의 색인을 생성해야 하고, 이에 따라 색인 저장 공간의 오버헤드와 색인 관리의 오버헤드가 발생한다. 본 논문에서는 하나의 색인을 사용하면서도 다양한 길이의 질의 시퀀스에 대한 정규화 변환을 지원하는 효율적인 서브시퀀스 매칭 방법을 제안한다. 이를 위하여, 우선 정규화 변환을 일반화한 포함-정규화 변환(inclusion-normalization transform) 개념을 제시한다. 포함 정규화 변환이란 색인에 저장할 윈도우에 대해서 해당 윈도우를 포함하는 서브시퀀스의 평균과 표준편차로 정규화하는 것으로서, 기본적인 정규화 변환을 윈도우 및 서브시퀀스 개념을 사용하여 확장한 것이다. 다음으로, 포함-정규화 변환을 기존 서브시퀀스 매칭 연구에 적용하기 위한 이론적 근거를 정리로서 제시하고 증명한다. 그리고, 이 방안을 구현하기 위한 색인 구성 알고리즘 및 서브시퀀스 매칭 알고리즘을 각각 제시한다. 실제 주식 데이터에 대한 실험 결과, 제안한 방법은 기존 방법에 비해 최대 $2.5{\sim}2.8$배까지 성능을 향상 시킨 것으로 나타났다. 본 논문에서 제안한 정규화 변환 지원 서브시퀀스 매칭은 정규화 변환 이외의 다른 변환을 지원하는 서브시퀀스 매칭으로 일반화 될 수 있다. 따라서, 제안한 방법은 정규화 변환을 포함하는 많은 다른 종류의 변환을 지원하는 서브시퀀스 매칭에 폭넓게 적용될 수 있는 좋은 연구결과라 사료된다.
본 논문에서는 부분 집계 근사법(Piecewise Aggregation Approximation: PAA)이 MBR-안전(MBR-safe) 성질을 가짐을 보이고, 이를 사용한 효율적인 서브시퀀스 매칭 방법을 제안한다. MBR-안전 변환이란 고차원 MBR을 직접 변환한 저차원 MBR이 개별 고차원 시퀀스가 변환된 저차원 시퀀스를 모두 포함하는 변환을 의미한다. 이와 같은 MBR-안전 변환을 사용하면 고차원 MBR을 직접 저차원 MBR로 변환할 수 있어 유사 시퀀스 매칭에서 필요한 저차원 변환 횟수를 크게 줄일 수 있다. 또한, PAA는 계산이 간단하고 성능이 우수한 저차원 변환으로 알려져 있다. 이에 따라, 본 논문에서는 이들 두 개념의 장점을 통합하기 위하여, 기존의 PAA가 MBR-안전 성질을 가짐을 확인하고, 이를 사용하여 서브시퀀스 매칭의 성능을 개선한다. 본 논문의 공헌은 다음과 같다. 첫째, PAA 기반의 MBR 저차원 변환인 mbrPAA를 제안하고, mbrPAA가 MBR-안전함을 정형적으로 증명한다. 둘째, mbrPAA 기반의 새로운 서브시퀀스 매칭 방법을 제안하고, 이 방법의 정확성을 증명한다. 셋째, 서브시퀀스 매칭에서 엔트리 재사용 성질(entry reuse property)의 개념을 제시하고, 이 개념에 기반하여 고차원 MBR을 효율적으로 구성하는 방법을 제안한다. 넷째, 실험을 통해 mbrPAA의 우수성을 입증한다. 실험 결과, 제안한 mbrPAA는 기존 방법에 비해 저차원 MBR 구성을 평균 24.2배 빠르게 수행하고, 서브시퀀스 매칭 성능을 최대 65.9%까지 향상시킨 것으로 나타났다.
본 논문에서는 시계열 데이터베이스에서 서브시퀀스 매칭을 효과적으로 처리하는 방안에 관하여 논의한다. 먼저, 본 논문에서는 서브시퀀스 매칭을 위한 기존 기법의 인덱스 검색에서 발생하는 성능상의 문제점들을 지적하고, 이들을 해결할 수 있는 새로운 방법을 제시한다. 제안된 기법은 서브시퀀스 매칭의 인덱스 검색 문제를 윈도우-조인이라는 일종의 공간 조인 문제로 새롭게 해석하는 것에서 출발한다. 윈도우-조인의 빠른 처리를 위하여 제안된 기법에서는 서브시퀀스 매칭을 시작할 때 질의 시퀀스를 위한 R*-트리를 주기억장치 내에 구성한다. 또한, 제안된 기법은 데이터 시퀀스들을 위한 디스크 상의 R*-트리와 질의 시퀀스를 위한 주기억장치 상의 R*-트리를 효과적으로 조인할 수 있는 새로운 알고리즘을 포함한다. 이 알고리즘은 데이터 시퀀스들을 위한 R*-트리 페이지들을 인덱스 단계의 착오 채택 없이 단 한번만 디스크로부터 액세스하므로 디스크 액세스 측면에서 최적의 기법임이 증명된다. 또한, 다양한 실험을 통한 성능 평가를 통하여 제안된 기법의 우수성을 정량적으로 규명한다.
일정 기간 동안 객체의 변화한 값들을 기록한 것을 그 객체에 대한 시계열 데이타 시퀀스라고 부르며, 이들의 집합을 시계열 데이타베이스라고 한다. 서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이타베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭의 성능을 극대화하기 위한 방안을 제시한다. 먼저, 윈도우 크기 효과로 인한 서브시퀀스 매칭의 심각한 성능 저하 현상을 정량적으로 관찰하여, 하나의 윈도우 크기를 대상으로 만든 단 하나의 인덱스만을 이용하는 것은 실제 응용에서 만족할만한 성능을 제공할 수 없다는 것을 규명하였다 또한, 이러한 문제로 인해 다양한 윈도우 크기들을 기반으로 다수의 인덱스들을 구성하여 서브시퀀스 매칭을 수행하는 인덱스 보간법의 응용이 필요함을 보였다. 인덱스 보간법을 응용하여 서브시퀀스 매칭을 수행하기 위해서는 먼저 다수의 인덱스들을 위한 윈도우 크기들을 결정해야 한다. 본 연구에서는 물리적 데이타베이스 설계 방식을 이용하여 이러한 최적의 다수의 윈도우 크기들을 선정하는 문제를 해결하였다. 이를 위하여 시계열 데이터 베이스에서 수행될 예정인 질의 시퀀스들의 집합과 인덱스 구성의 기반이 되는 윈도우들의 크기의 집합이 주어질 때, 전체 서브시퀀스 매칭들을 수행하는 데에 소요되는 비용을 예측할 수 있는 공식을 산출하였다. 또한, 이 비용 공식을 이용하여 전체 서브시퀀스 매칭들의 성능을 극대화 할 수 있는 최적의 윈도우 크기들을 결정하는 알고리즘을 제안하였으며, 이 알고리즘의 최적성과 효율성을 이론적으로 규명하였다. 끝으로, 실제 주식 데이타와 대량의 합성 데이타를 이용한 실험 결과, 제안된 기법은 기존의 단순한 기법과 비교하여 1.5배에서 7.8배 성능이 향상됨을 보였다.
본 논문에서는 동적 타임 워핑(DTW) 거리를 사용하는 범위 서브시퀀스 질의 처리 방법을 제안한다. 본 논문에서는 제안하는 방법은 데이타 시퀀스를 디스조인트 윈도우로 분할하고, 질의 시퀀스를 슬라이딩 윈도우로 분할하는 방법을 사용하는 DualMatch의 범위 서브시퀀스 질의 처리 방법을 이용한다. DualMatch는 유클리디언 거리 하에서 동작하는 것으로 알려져 있다. 그러나, 유클리디언 거리는 견고하지 못한 유사 모델이기 때문에 DualMatch는 반드시 DTW 거리를 지원해야 한다. 본 논문에서는 제안하는 방법의 정확성을 입증하기 위해서 중요한 정리를 유도하고, 이에 근거한 알고리즘을 제안한다. 광범위한 실험을 통해 본 논문에서 제안하는 방법이 순차 스캔 알고리즘 보다 효율적으로 동작함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.