• Title/Summary/Keyword: submerged vehicles

Search Result 13, Processing Time 0.02 seconds

A Study about the Pitch Stability of Exploratory Underwater Vehicles (해저탐사잠수정의 연직평면에서의 방향안정성에 관한 연구)

  • 윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 1987
  • Nowadays natural resources on shore have been almost exhausted all over the world and mankind is beginning searching for unexploited resources on the bed of deep-sea floor. In exploring mineral resources and etc. in the ground of sea-bed, a sumbersible craft is one of the most important tools. These days, the stage of the technique of building and operating an exploring submersible craft is almost alike that of building and operating an airplane in the first years of the nineteen-twenties. At the present time, the problems arising in building and operating a submersible craft can be divided into four parts as follows; 1. How to build a hull that can bear high pressure under deep sea level. 2. How to decide the necessary facilities to be put on it. 3. How to decide the scope of stabilities and maneuvering characteristics of it. 4. On what sea conditions, the devices of launching and recovering it should be designed on the mother-ship. In this paper treating one of the third problems the author made a mathematic formula that can be useful in deciding the scope of dynamic course stability on the vertical plane and actually calculated the onset speed of pitch instability of an exploring craft. With the above mentioned calculations the author demonstrated that the value of $Z_g$ and the speed of a submerged craft are the most important factors in decideing the scope of dynamic stability on the vertical plane.

  • PDF

An Experimental Study on Artificial Supercavitation Generated by Different Combinations of the Cavitator and Body (캐비테이터와 몸체의 조합에 따라 발생하는 인공 초월공동에 대한 실험연구)

  • Jeong, So-Won;Park, Sang-Tae;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.327-334
    • /
    • 2019
  • Recently, there has been a growing interest in artificial supercavitation as a way to reduce friction drag of submerged vehicles. A cavitator plays an important role to generate the supercavity, so many studies have focused on the case of cavitator only. However, the body shape behind the cavitator affects the growth of the supercavity and this effect must be considered for evaluating the overall performance of the system. In this work, we conducted experimental investigation on artificial supercavitation generated by different combinations of the cavitator and body. We observed the supercavity pattern by using a high-speed camera and measured the pressure inside the cavity by using an absolute pressure transducer. We estimated the relation between the amount of injected air and the supercavity shape for different combinations. In summary, the disk type cavitator generates larger supercavity than that of the cone and ellipsoidal cavitators, but cavity development speed is relatively slower rather than the others. Furthermore, fore body angle plays an important role to generate the supercavity enveloping the entire body.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF