• Title/Summary/Keyword: submerged plant

Search Result 220, Processing Time 0.027 seconds

Characterization of Microbial Community in Biological Wastewater Treatment System Using Respiratory Quinone Profiles

  • Lim Byung-Ran;Ahn Kyu-Hong;Lee Yonghun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.111-114
    • /
    • 2003
  • The dynamics of microbial community structure of the various domestic wastewater treatment processes were examined using a novel approach of quinone profiles. The compositions of microbial quinone of 5 sites fer plant and lab-scale activated sludge were analyzed. More than 14 kinds of quinones were observed in the activated sludges tested in this study. The microbial community structure of the plant activated sludge processes a little differed from that of the lab-scale submerged MBR systems. The dominant quinones were UQ-8, UQ-10 followed $MK-8(H_4)$, MK-7 and MK-6. The molar ratio of ubiquinones to menaquinones (UQ/MK) changed from 0.81 to 1.9, indicating that aerobic bacteria dominated the microbial community of the activated sludge examined. The microbial diversity of the activated sludges calculated from the all quinone compositions was 9.5-11.9 and the microbial equability of the activated sludges was 0.64-0.79.

  • PDF

Effects of Different Tillage Practices on Changes of Soil Physical Properties and Growth of Direct Seeding Rice (경운방법의(耕耘方法) 차이(差異)가 토양물리성(土壤物理性)과 직파(直播)벼생육(生育)에 미치는 영향(影響))

  • Cho, Hyun-Jun;Jo, In-Sang;Hyun, Byung-Keun;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.301-305
    • /
    • 1995
  • This study was conducted to find out the changes of soil physical properties and rice growth by the different soil prepartion, such as direct seeding in dry or submerged condition, tillage or no-tillage, and transplanting the infant seedlings. Soil bulk density and hardness were higher in no-tillage plots than tillage plots, and in dry-seeding plots than submerged seeding plots. Permeability of no-tillage plot was increased 56% and water requirement was also increased 27% compare to the conventional transplanting condition. In no-tillage plot, the soil water contents were so rapidly decreased that easily changed to optimum condition for machinery working. The root growth of rice was inhibited as increasing the soil bulk density at early stage, bottom of culm in no-tillage submerged plot was located 0.9cm above the soil surface and the rice plant slightly lodged. The root distribution of surface layer was higher in no-tillage plot and the heading date was 2 days earlier in no-tillage plots than tillage plots, and 3 days earlier in dry seeding plot than submerged seeding plot. Rice yields of no-tillage plots were 5.55 M/T/ha and 5.16 M/T/ha for dry and submerged seeding respectively. These yields were lower about 12.1 % in dry seeding and 18.3% in submerged seeding compare with 6.31M/T/ha of transplanting plot. Rice yields were higher at dry seeding than submerged seeding in no-tillage condition, but in tillage condition, the rice yields were better at submerged seeding plot than dry one.

  • PDF

Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water (방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

Effects of Rice Straw on the Microflora in Submerged Soil -II. Relation to the Decommposition of Organic Matter (볏짚시용(施用)이 논토양(土壤)의 미생물상(微生物相)에 미치는 영향(影響) -II. 유기물대사(有機物代謝)에 관여(關與)하는 미생물(微生物)과 유기물(有機物)의 분해(分解))

  • Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.289-298
    • /
    • 1984
  • These studies were carried out to investigate the effects of rice straw on microflora in relation to the decomposition of organic matter, and the rate of rice straw decomposition. The number of total bacteria was increased in the first stage, and the number of microorganisms in upper layer was generally larger than lower layer. The number of fungi tended to decline as rice plant grew. Aerobacter among cellulose decomposition bacteria decreased with time, and the number of microorganisms in lower layer was higher than upper layer. The number of glucose decomposition bacteria and sulfate reducing bacteria increased in the submerged soil to which rice straw was applied, but decreased by percolation. the change of manganese oxidizing bacteria seemed not to be affected by rice straw application while they tend to increase as the rice plant grew. The aspect of microorganisms in the percolated water was same that of lower layer, but the number was low as much $10^{-1}$ during the whole stages. The decomposition rate of rice straw applied to submerged soil was about 40 per cent during the rice grew. The decomposition rate of cellulose contained rice straw was about 30 per cent, and lignin was about 60 per cent. The 70-80 per cent of nitrogen remained in the rice straw applied to soil.

  • PDF

Fouling Characteristics in Submerged Membrane System of Two-Phase Anaerobic Reactor for Piggery Wastewater Treatment (축산폐수 처리를 위한 막결합형 이상 혐기성 반응조에서 여과막 저항특성)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.523-533
    • /
    • 2000
  • A two-phase anaerobic reactor with submerged membrane system was developed for increasing acidogen concentration and methane recovery. The membrane used was mixed esters of cellulose of $0.5{\mu}m$ pore size and $0.8m^2$ of effective surface area. The methanogenic reactor comprised of UASB (Upflow Anaerobic Sludge Blanket) and AF (Anaerobic Filter). COD removal efficiency was 70~80% and the methane content in the biogas increased up to 90% for the submerged membrane system in the anaerobic reactor. As the cake resistance of membrane caused a serious problem, stainless steal prefilters (40, 53, $63{\mu}m$) and air backwashing methods were applied to minimize the cake resistance effectively. Among the tested prefilters. the $63{\mu}m$ prefilter showed the best performance for reduction of cake resistance and a successful long-tern operation. By cleaning with alkali first and acidic solution later. the permeate flux decreased by long term operation was recovered to 89% of that with a new membrane.

  • PDF

A Study on Plant in Submerged Area of Hoengseong Dam -Centered with Subdivided Area to Select Plants Capable of Transfer- (횡성댐 수몰지역내(水沒地域內)의 식생(植生)에 관(關)한 연구(硏究) -이식대상구역(移植對象區域)을 중심(中心)으로-)

  • Lee, Woo-Cheol;Lee, Ki-Eui;Seo, Ok-Ha;Jo, Hyun-Kil;Baic, Weon-Kee;Kim, Kyoung-Jin
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.28-50
    • /
    • 1997
  • This study was carried out in a part of conservative plans recovering natural ecosystem which will be submerged, as Hoengseong dam is being constructed around Hoengseong-Eup and Gabcheon-Myun. The submerged area was divided into 7 small areas to figure out what kinds of species of plants are and will be according to detailed geographic characteristics. In the center of the subdivided areas, Degree of Green Naturality, standing biomass, net 36production per year, and composition of plant species were investigated. The results are as following; 1. The surveyed area was classified into 8 degree by Degree of Green Naturality, and the appeared degree and the rate of occupation were 0(3.1%), 1(5.3%), 2(28.2%), 3(0.1%), 5(0.2%), 7(4.6%), 7(44.7%), and 8(13.8%). 2. Standing biomass was 88,436.3 ton/year and net production per year was 12,960.3 ton/year. 3. The list of vascular plants identified in this study consisted of 86 families, 221 genera, 1 variety, 3 formae and 306 species, totally summiting upto 310 species. 4. The 7 surveyed areas were largely occupied by Pinus community. In addition, there were Quercus mongolica, Quercus dentata, and Quercus acutissima communities.

  • PDF

Effect of Potassium Application on Cation Uptake by Rice Plant and Leachate in Submerged Soil (답토양(畓土壤)에서 가리시용(加里施用)이 벼의 주요양(主要陽)이온 흡수(吸收)와 용탈(溶脫)에 미치는 영향(影響))

  • Jung, Kwang-Young;Cho, Seong-Jin;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.235-241
    • /
    • 1983
  • Major cation uptake by the rice plant and its leachates in submerged condition were studied at 3 different levels of potassium and nitrogen application with three texture soils (Clay loam, Loam, Sandy loam) by pot experiment. The results are as follows. 1. Potassium uptake and grain yields of rice plant were increased and calcium and magnesium uptake of rice plant were decreased by application of potassium. 2. The potassium application caused to increase Ca, Mg, K and $NH_4$ Content in leachate. 3. In the rice leaf at heading stage, the optimum cation ratios of K/Ca, K/Mg in me and $K_2O/N$ in % at N 3.3g/pot level were 1.59, 4.26 and 3.62, respectively, but the ratios were increased to 1.65, 4.32 and 3.94 at high level of nitrogen. 4. Similar trends of cation ratios were found in rice straw. leaching soil solution and soils after harvest by potassium application.

  • PDF

New records of two alien plants, Juncus torreyi (Juncaceae) and Egeria densa (Hydrocharitaceae) in Korea

  • Jongduk JUNG;Hye Ryun NA;Kyu Song LEE;Yeongmin CHOI;Woongrae CHO;Jin-Oh HYUN
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.54-59
    • /
    • 2023
  • Naturalized populations of two alien plants were newly found, and we describe their morphological characteristics and habitats with photographs. One is a member of Juncaceae, Juncus torreyi Coville, and was newly found at a pool of a beach in Gangwon-do. This rush is native to North America and belongs to the sect. Ozophyllum (subgen. Juncus) according to certain morphological characteristics, such as its racemose inflorescence, the absence of floral bracteole, and unitubular leaves with perfect septa. J. torreyi is easily distinguishable from Korean rushes by its long rhizomes with swollen nodes and globular head with 25-100 flowers. Its introduction into Japan and Europe was reported, but the ecological risk associated with its over-dispersal is not known. The other alien plant is a submerged plant, Egeria densa Planch. (Hydrocharitaceae), which was found in streams in Gyeongsangbuk-do and ditches in the Busan-si area, both of which being in the watershed of the Nakdong River. Egeria densa is similar to Hydrilla verticillata (L.f.) Royle, which is native to Korea. However, it is distinguished from H. verticillata by its larger flowers and lack of overwintering organs. This alien plant is native to South America and was introduced for aquarium gardening and naturalized around the world. Egeria densa is treated as a malignant weed due to its asexual reproduction and rapid growth. Size changes and the number of populations of E. densa must be investigated.

The Characteristics with HRT Variation on InSub Pilot Plant for Advanced Sewage Treatment

  • Kang, Jin-Young;Huh, Mock
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • The InSub system(applied for a patent) was developed, as it combined the indirectly aerated submerged biofiltration(InSub) reactor and Anaerobic/ Anoxic reactor. This system which can eliminate organism and nutrient materials at the same time, which is safe and economical to be maintained and managed is more simple process than the complicated existing biological advanced sewage treatment system. The most suitable HRT of this study showed 9 hours. As looking into the effluent concentration and removal efficiency of each item at 9 hours of HRT, each effluent concentration for $SS,\;BOD5,\;COD_{Mn},\;and\;COD_{Cr}$ was 1.46 mg/L, 7,09 mg/L, 9.84 mg/L and 16.42 mg/L. And their removal efficiency was 96.98%. 90.59%, 77.18% and 83.92%, respectively. Each effluent concentration of T-N and T-P was 10.42 mg/L and 1.04 mg/L. Their removal efficiency was 73.38% and 61.62%, respectively. This pilot plant experiment(the state was without the internal recycling.) followed a variety of HRT. The results confirmed that it was to be advanced sewage treatment system with high efficiency when it combined with the internal recycling.

Regular Waves-induced Seabed Dynamic Responses around Submerged Breakwater (규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.132-145
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. In this study, to evaluate the liquefaction potential on the seabed quantitatively, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank model and the finite element elasto-plastic model. Under the condition of the regular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated.