• Title/Summary/Keyword: subgrain

Search Result 33, Processing Time 0.021 seconds

Effect of Phase Composition on High Temperature Plasticity for Duplex Stainless Steel (Duplex Stainless Steel의 상변화에 따른 고온 소성변형 거동)

  • Choi, Jae-Ho;Choe, Byung-Hak;Kim, Seung-Eon
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • The high temperature mechanical behaviour of duplex stainless steels was examined. The relation-ship between the dynamic recrystallization substructures and the flow behaviour was analyzed in detail, and the flow behaviour was analyzed in detail, and the mechanisms of dynamic recrystallization were also discussed. The formation of disloca-tion cells and subgrain structures is of great significance to the understanding of high temperature deformation.

  • PDF

Microstructures and Hardness of CO2 Laser Welds in 409L Ferritic Stainless Steel (409L 페라이트계 스테인리스강 CO2레이저 용접부의 미세조직과 경도)

  • Kong, Jong Pan;Park, Tae Jun;Na, Hye Sung;Uhm, Sang Ho;Kim, Jeong Kil;Woo, In Su;Lee, Jong Sub;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.297-304
    • /
    • 2010
  • The microstructure and hardness of $CO_2$ laser welds were investigated in the Ti-stabilized ferritic stainless steel 409L. The observed specimen was welded in a fully penetrated condition in which the power was 5 kW and the welding speed 5 m/min. The grain structure near the bond line of the laser welds was produced by epitaxial growth. The grain size was the largest in the fusion zone, and HAZ showed nearly the same grain size as that of the base metal. The HAZ microstructure consisted of subgrains and precipitates that were less than 100 nm in size and that were located along the subgrain boundaries. On the other hand, the hardness was the highest in the fusion zone due to the large amount of small precipitates present. These were composed of TiN, Ti(C,N) and $TiO_2$+Ti(C,N). The hardness decreased continuously from the fusion zone of the base metal. The HAZ hardness was slightly greater than that of the base metal due to the existence of subgrains and precipitates in the subgrain boundary.

Microstuctures and Themal Stability of Rapidly Solidified Al-Fe-V-Si-(Mn) Alloys (급랭응고한 Al-Fe-V-Si계 합금의 미세조직과 열안정성에 관한 연구)

  • Kim, Seon-Hwa;Park, Won-Wook
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 1991
  • The main purpose of this paper was to investigate the change of rapidly solidified microstructures and dispersoid behavior according to heat-treatment in the Al-Fe-V-Si-(Mn) alloys. It was found that (111) preferred orientation identified by X-ray diffraction and fine subgrain/large grain were observed in the rapidly solidified Al-Fe-V-Si-(Mn) alloys. Cell boundary of the zone A was composed of the microcrystalline, whereas that of the zone B was amorphous. Decomposition of the Al-Fe-V-Si-(Mn) alloys occurred at about $300^{\circ}C$. These alloys exhibited excellent thermal stability at the elevated temperature. Microstructure of the zone B was more stable than that of the zone A. The spherical dispersoid and 5-fold symmetry phase was also more thermally stable than the amorphous structure of cell boundary.

  • PDF

Imperfections in $LiTaO_3$ Crystal ($LiTaO_3$ 단결정의 결함)

  • 김한균;박승익;박현민;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • The imperfections of LiTaO3 crystals grown from the Pt-Rh and the Ir crucible were investigated with X-ray diffraction, optical and electron microscope. The growth direction was <100>h and the plane parallel to the plane connecting two main growth ridges was (012)h which would be the main cleavage plane. The dislocation density in the specimen cut parallel to (012)h plane increased with polishing time and the inverted ferroelectric microdomains were induced based on this dislocations. Such imperfections as 180$^{\circ}$ domains, microcracks, dislocations and stacking faults. could be found in the LiTaO3 crytals. The crystal contaminated with lots of Rh form Pt-Rh crucible during the crystal growing under air atmosphere contained more imperfections. The main cleavage plane and subgrain boundary parallel to its growing axis might be the main source of reducing the mechnical strength during the wafering process.

  • PDF

The mechanism of the formation of an anodic oxide layer on the aluminium (알루미늄 양극산화피막의 생성기구)

  • Park, Soon;Kang, Tak
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 1979
  • The structure of anodic aluminium oxide films formed in 2% oxalic asid at constant temperature was studied by the oid of the transmission and replica electron microscopy. Far the initial stage of oxidations, it is observed that pores are initiated from lattice defects as subgrain boundaries, and then spread radially. Some pores merge each other and the others cease to grow until the current density reaches to the steady state. The pore diameter and the cell size are proportional to the anodizing voltages, and it is considered that the pore initiation and growth are largely controlled by the field - assisted oxide dissolution.

  • PDF

Thermal Residual Stress Relaxation Behavior of Alumina/SiC Nanocomposites (Alumina/SiC 나노복합재료에서의 잔류 열응력 완화거동에 관한 연구)

  • Choa, Y.H.;Niihara, K.;Ohji, T.;Singh, J.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.11-11
    • /
    • 2002
  • Plastic deformation was observed by TEM around the intragranular SiC particles in the $Al_2O_3$ matrix for $Al_2O_3/SiC$ nanocomposite system. The dislocations are generated at selected planes and there is a tendency for the dislocations to form a subgrain boundary structure with low-angel grain boundaries and networks. In this study, dislocation generated in the $Al_2O_3$ matrix during cooling down from sintering temperatures by the highly localized thermal stresses within and/or around SiC particles caused from the thermal expansion mismatch between $Al_2O_3$ matrix and SiC particle was observed. In monolithic $Al_2O_3$ and $Al_2O_3/SiC$ microcomposite system. These phenomena is closely related to the plastic relaxation of the elastic stress and strain energy associated with both thermal misfitting inclusions and creep behaviors. The plastic relaxation behavior was explained by combination of yield stress and internal stress.

  • PDF

Internal Stress, Anelasticity and Recovery in Steady State Creep of 2024 Al Alloy at High Temperature (2024 Al 합금의 고온 정상크리이프 중의 내부응력의 탄성 및 회복에 관한 연구)

  • 박경동;오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1986
  • Measurements of internal stress .sigma.$_{i}$, anelastic strain .epsilon.$_{A}$ and recovery rate .gamma. were made in steady state creep of 2024 Al alloys over a wide range of stresses at temperatures between 260.deg. C and 380.deg. C, for the purpose of investigating the relations among the three parameters. Values of .sigma.$_{i}$ were obtained by the method of strain transient dip test, and those of .epsilon.$_{A}$ and .gamma. were determined from the results of sudden stress removal or reduction tests. As a main result, it is thought that the anelastic behavior and recovery process are basically dependent on same deformation mechanisms.sms.sms.

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

Microstructural Features of Al Alloy 7N01 Welded by $CO_2$ Laser - Microsturctural Features of Full Penetration Joints - ($CO_2$ 레이저 용접한 7N01 Al합금의 미세조직 특징(I) - 완전용입 용접부의 미세조직 -)

  • 윤재정;강정윤;김인배;김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2001
  • The effect of welding condition on the microstructures of the weld metal in A7N01 welded by $CO_2$ laser was investigated. The number of ripples was increased with decreasing power and increasing welding speed. In the bead without ripple lines, the subgrain microstructures distribution from the fusion line toward the center of the bead were in the order of cellular, dendritic and equiaxed dendrite. However, in the bead with ripple lines, cellular and dendritic were formed between the fusion boundary and the ripple line. Inaddition, those structures were also observed between the ripple line. Equiaxed dendrites were formed only at the center line region. Cellular and dendritics formed near the ripple line were larger than those formed near the fusion boundary. The cooling rates estimated by the dendrite arm spacing were in the range of 200 to 1150oC/s. Cooling rate was increased with decreasing the power and increasing the welding speed. Mg and Zn segregated at the boundaries of cellulars and dendritics, Mg was segregated more than Zn. The segregation of Mg and Zn decreased with increasing cooling rate. Hardness of the weld metal was lower than that of the base metal in all welding conditions and increased as the cooling rate increased.

  • PDF