• Title/Summary/Keyword: subgrade soil

Search Result 209, Processing Time 0.022 seconds

Evaluation of Freeze-Thaw Effect on the Modulus of Subgrade Soils from Impact Resonance Test (충격공진시험을 이용한 동결.융해에 따른 노상토의 탄성계수 평가)

  • Lee, Jae-Hoan;Kweon, Gi-Chul
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • Anti-freezing layer does not used in case of non frost heaving in subgrade soils. In this case, the modulus of subgrade soils were varied with freezing and thaw cycles under non frost heaving. That effect should be properly considered in pavement design. Impact resonance test that is nondestructive testing method was used for continuously determining the modulus of subgrade soils during freezing and thaw cycle. The modulus of subgrade soils was identical with freezing and thaw cycles under closed freezing and thaw system which is no water supplement into specimen during testing. There was also no difference in the modulus of subgrade soil between before and after freezing-thaw cycles for all specimens with different water content and density. That is thaw-weakening of subgrade soils do not occur under closed freezing and thaw system. The moduli at freezing conditions are varied with water content and density, but it can be ignored in practical design sense.

Soil-Water Characteristics and Hysteretic Behaviors on Unsaturated Pavement Subgrades in Test Roads (시험도로 노상토의 불포화 함수특성 및 이력현상)

  • Park Seong-Wan;Shin Gil-Ho;Kim Byeong-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.95-104
    • /
    • 2006
  • Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. This study focuses on hysteresis observed in a compacted weathered granite subgrade soils based on the pressure plate laboratory tests. It was found that the Soil-Water Characteristics Curve of a soil is hysteretic and unique. The results also show that the wetting and drying curves predicted using the Fredlund and Xing model is quite close to the laboratory-measured results. For a specific matric suction, water content or coefficient of permeability on a wetting curve is always lower than those found on a drying curve.

  • PDF

Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$ (지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰)

  • Kim, Dae-Sang;Choi, Chan-Yong;Kim, Seong-Jung;Yu, Jin-Young;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.

Resilient Modulus of Laboratory End Field Compacted Cohesive Soils (실내와 현장다짐 점성토의 회복탄성계수)

  • 이우진
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.5-24
    • /
    • 1994
  • Resilient modulus tests were performed on five cohesive soils sampled from in -service subgrades and three cohesive soils compacted in the laboratory. It was concluded that in service resilient modulus can not be estimated from the resilient modulus of laboratory specimen compacted at same water content and dry density as in -service condition. The stress at 1 percent axial strain in unconfined compression tests ($Su_{1.0%}$) was found as a good indicator of the resilient modules ($M_R$), and the unique relationship between MR and $Su_{1.0%}$ was obtained. This relationship for the laboratory compacted soil is slightly different from that for the field compacted soil and the difference is less pronounced at the confining stress level expected to exist in subgrade. A proposed relationship itself is not affected by the changes in subgrade after construction and, therefore, it is applicable to as compacted and in service subgrade conditions.

  • PDF

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

A Study on the Reinforced Characteristic of Geogrids in Multi-Layered System (다층 시스템에서 지오그리드의 보강특성에 관한 연구)

  • 심재범;신은철;신민호;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.533-540
    • /
    • 2002
  • Recently, geogrid reinforcement has been applied tn the subgrade of the roadway and the railway on the compressible layered soil, and the relevant reserch on the reinforcing mechanism has been performed. In this study, mechanics of geogrid reinforcement and the parameters for the improvement of bearing capacity are evaluated and presented based on the case histories of the field load test on the geogrid-reinforced layered subgrade

  • PDF

Back Analysis of the Earth Wall in Multi-layered Subgrade (다층지반에 근입된 흙막이 벽의 역해석에 관한 연구)

  • 이승훈;김종민;김수일;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • This paper presents a back-calculation technique leer the prediction of the behavior of earth wall inserted in multi-layered soil deposit. The soil properties are back-calculated from the measured displacement at each construction stage and the behavior of earth wall far the next construction stage is predicted using back-calculated soil properties. For multi-layered soil deposit, the back-calculation would be very difficult due to the increase in the number of variables. In this study, to solve this difficulty, the back-calculation was performed successively from the lowest layer to the upper layers. An efficient elasto-plastic beam-column analysis was used for forward analysis to minimize the computation time of iterative back-calculation procedure. The coefficients of subgrade reaction and lateral earth pressure necessary for the formation of p-y curve were selected as back calculation variables, and to minimize the effect of abnormal behavior of the wall which might be caused by any unexpected action during construction, the difference between measured displacement increment and computed displacement increment at each construction stages is used as the objective function of optimization. The constrained sequential linear programming was used for the optimization technique to found values of variables minimizing the objective function. The proposed method in this study was verified using numerically generated data and measured field data.