• Title/Summary/Keyword: subcooling system

Search Result 91, Processing Time 0.03 seconds

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

Performance Analysis of Refrigeration System by Adjusting Manual Expansion Valve (수동식 팽창밸브 조정에 의한 냉동시스템의 성능 분석)

  • Yang, Hyung-Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.113-119
    • /
    • 2011
  • This study analyzed facts affecting the performance of refrigeration systems after throttling actions, by changing the amount of refrigerant according to adjusting the opening of manual expansion valve to 80%, or 20% with vapor compressional refrigeration training equipment. At opening of 20%, the inlet and outlet temperature of compressor, subcooling and superheat, condenser heat, refrigeration effect, flash gas heat, coefficient of performance were higher, while at 80%, condensing pressure, evaporating pressure, compression work were higher, Thus, we could see changes in the amount of refrigerant affect the performance of the refrigeration system.

Performance analysis of a R744 and R404A cascade refrigeration system with internal heat exchanger (내부 열교환기 부착 R744-R404A용 캐스케이드 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • This paper describes an analysis on performance of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporating and condensing temperature in the R744 low- and R404A high-temperature cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : COP of cascade refrigeration system increases with the increasing of compression efficiency, but decreases with the increasing temperature difference of cascade heat exchanger. Also, the COP increases with the increasing of internal heat exchanger efficiency in high-temperature cycle, but decreases with that in low-temperature cycle. Therefore, internal heat exchanger efficiency, compressor efficiency and temperature difference of cascade heat exchanger on R744-R404A cascade refrigeration system have an effect on the COP of this system.

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Theoretical analysis on the cool storage system using clathrates (포접화합물을 이용한 축냉시스템에 대한 이론적 해석)

  • Chung, J.D.;Jung, I.S.;Yoo, H.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF

A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow (과냉 비등류의 실제건도와 보이드율에 관한 연구)

  • Kim, J.H.;Kim, C.S.;Kim, K.K.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE CANADIAN DEUTERIUM URANIUM MODERATOR TESTS AT THE STERN LABORATORIES INC.

  • KIM, HYOUNG TAE;CHANG, SE-MYONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.284-292
    • /
    • 2015
  • A numerical calculation with the commercial computational fluid dynamics code CFX-14.0 was conducted for a test facility simulating the Canadian deuterium uranium moderator thermal-hydraulic. Two kinds of moderator thermal-hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the Canadian deuterium uranium moderator circulating vessel, which is called a calandria tank, housing a matrix of horizontal rod bundles simulating calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the calandria system. In the present study, the full geometric details of the calandria tank are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

Investigation on the Selection of Capillary Tube for the Alternative Refrigerant R-407C

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The capillary tube performance for R-407C is experimentally investigated. The experimental setup is a real vapor-compression refrigerating system. Mass flow rate is measured for various diameter and length while inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rate of the numerical model is about 14% less than the measured mass flow rate. It is found that mass flow rate and length for R-407C are less than those for R-22 under the same condition. Based on this experimental study and the numerical model, a set of design charts for capillary tube of R-407C is proposed.

  • PDF

Effects of Refrigerant and Oil Charges on the Performance of an Refrigeration System (냉동기유 주입량과 냉매 충진량에 따른 냉동기 성능 평가)

  • 선종관;채수남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.617-625
    • /
    • 2002
  • In this study, effects of refrigerant and oil charges on the performance of a refrigeration system simulating an automobile air conditioner have been experimentally investigated using R134a and PAG oil. Measurements were taken in a breadboard type refrigeration test unit with a compressor used for a commercial automobile air-conditioner under a set of condition imposed upon normally to automobile air conditioners. Both the COP and capacity decreased rapidly as the oil charge increased because of the decrease in vapor pressure of the circulating refrigerant/oil mixture. The excess oil left in the evaporator also caused heat transfer degradation resulting in a decrease in capacity and in turn COP. It was found that there is an optimum refrigerant charge at which the COP becomes the maximum. Below this optimum charge, both the capacity and COP increased as the refrigerant charge increased and above the optimum charge, both of them remained almost constant. Hence, the COP seems to be the most important factor in determining the optimum refrigerant charge. When the system was undercharged, the refrigerant at the condenser exit lost subcooling and showed a sign of poor miscibility.

Influence of Charging Amounts on the Cooling Performance of $CO_2/Propane$ Mixtures and Concentration Shift Behavior (이산화탄소/프로판 혼합냉매의 냉방성능에 대한 충전량의 영향 및 순환성분비 변화 특성)

  • Kim, Ju-Hyok;Hwang, Yun-Wook;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.851-858
    • /
    • 2006
  • [ $CO_2$ ] and propane mixtures, which are environmentally benign, nontoxic, low in price, and compatible with materials and lubricants, were considered as promising alternative refrigerants. A fully instrumented air-conditioning system was developed for a precise performance evaluation of pure $CO_2$ and $CO_2/propane$ mixtures. In this paper, the effect of the charging amount and circulation concentration on the cooling performance of the system using $CO_2$ and propane mixtures was tested and discussed. Pure $CO_2$ and 85/15, 75/25 and 60/40 binary blends by the charged mass percentage of $CO_2/propane$ were selected as working fluids. An optimum charging amount was proposed as a parameter instead of the degree of subcooling, which can not be well defined in the transcritical cycle, to properly compare the performance between the transcritical and subcritical cycles.