• Title/Summary/Keyword: subcooling system

Search Result 91, Processing Time 0.021 seconds

An Experimental Study on the Flow Characteristics Inside an Open Two-Phase Natural Circulation Loop (개방된 2상 자연순환 회로내의 유동특성에 관한 실험적 연구)

  • 경익수;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1313-1320
    • /
    • 1993
  • Flow patterns inside the riser section and the effects of the heater inlet-and exit-restrictions, liquid charging level and the heater inlet subcooling on the flow characteristics inside an open two-phase natural circulation loop were studied experimentally. Three basic circulation modes were observed ; periodic circulation (A)(flow oscillations with incubation(no boiling) period), continuous circulations(stable operation mode with no flow oscillations), and periodic circulation (B) (flow oscillations with continuous boiling). The circulation rate increases and then decreases with the increase of the heating rate and the maximum circulation rate appears with the continuous circulation mode. The decrease of the inlet-restriction or the increase of the exitrestriction destabilizes the system. When the liquid charging level or the inlet subcooling decreases, the continuous circulation mode starts at the lower heating rate and the system is stabilized.

Study on longitudinal variation of subcooling with high elevated liquid line in a modular heat pump system (모듈형 동시냉난방 열펌프의 장배관/고낙차에 따른 액선 과냉도 변화에 대한 연구)

  • Shin, Kwang-Ho;Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang;Park, Sung-Ryung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1255-1260
    • /
    • 2008
  • This study is simulation of high elevated liquid line of a modular heat pump system to observe longitudinal subcooling variation. In a high elevated tube, subcooled refrigerant(R410A) through a condenser changes its states by heat transfer with surrounding air and by pressure drop from elevation. In this study, the liquid line was simulated through correlations of heat transfer and pressure drop for the variation from single-phase into two-phase flow. Pressure drop, heat transfer rate and vapor quality were calculated as key parameters. Two-phase turning heights and variations of the key parameters were confirmed from the simulation. As a result, high elevation of liquid line has great influence on upward flow, which requires additional equipment to compensate the variation.

  • PDF

Performance Analysis of an Ammonia(R717) and Carbon Dioxide(R744) Two-Stage Cascade Refrigeration System ($NH_3-CO_2$를 사용하는 이원 냉동 시스템의 성능 분석)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, cycle performance analysis of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The main results were summarized as follows : The COP of two-stage cascade refrigeration system increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of two-stage cascade refrigeration system decreases with the increasing condensing temperature, but increases with the increasing evaporating temperature. And the COP of two-stage cascade refrigeration system increases with increasing the compressor efficiency. Therefore, superheating and subcoolng degree, compressor efficiency, and evaporating and condensing temperature of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system have an effect on the COP of this system.

Development of Cascade Refrigeration System Using R744 and R404A - Analysis on Performance Characteristics - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(1) - 성능 특성에 관한 분석 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.182-188
    • /
    • 2011
  • In this paper, analysis on the performance characteristics of R744-R404A cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : It was observed that the highest COP of the system is achieved by higher superheating degree in R744 cycle than that in R404A cycle. The COP of the system increased by giving the subcooling degree in both cycles. The COP of the cascade system is the highest value when the system is operated at an optimum evaporation temperature.

Exergy Analysis of R744 OTEC Power Cycle with Operation Parameters (작동변수에 따른 R744용 해양온도차 발전 사이클의 엑서지 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1036-1042
    • /
    • 2012
  • This paper describes an analysis on exergy efficiency of R744 OTEC power system to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, evaporation and condensation temperature, and turbine and pump efficiency, respectively. The main results are summarized as follows : As the evaporation temperature, superheating degree, and turbine and pump efficiency of R744 OTEC power system increases, the exergy efficiency of this system increases, respectively. But condensation temperature and subcooling degree of R744 OTEC power system increases, the exergy efficiency of this system decreases, respectively. The effect of evaporation temperature and pump efficiency on R744 OTEC power system is the largest and the lowest among operation parameters, respectively. Therefore, the refrigerant temperature in the evaporator must be closely to the surface seawater temperature to enhance the exergy efficiency of R744 OTEC power system.

A Study of Heat Storage System with Phase Change Material - Inward Melting and Solidification in a Horizontal Cylinder - (상변화물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내에서의 내향용융 및 응고열전달 실험 -)

  • Kim, I.G.;Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.319-329
    • /
    • 1989
  • Heat transfer phenomena during inward melting and solidification process of the phase change material were studied expertimentally. The phase change medium was 99% pure n-docosane paraffin ($C_{22}H_{46}$). The solid-liquid interface motion during phase change was recorded photographically. Measurements were made on the temperature, the solid-liquid interface, the melted or frozen mass and the various energy components stored or extracted from the cylinder wall. For melting, the experimental results reaffirmed the dominant role played by the conduction at an early stage, by the natural convection at longer time. For solidification, natural convection effects in the superheated liquid were modest and were confined to short freezing time. Although the latent energy is the largest contributor to the total stored or extracted energy, the aggregate sensible energies can make a significant contribution, especially at large cylinder wall superheating or subcooling, large initial phase change material subcooling or superheating.

  • PDF

Test Results of Refrigerant R152a in a Mobile Air-Conditioning System

  • Shin, Jeong-Sub;Park, Won-Gu;Kim, Man-Hoe
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2008
  • This study presents test results of a mobile air-conditioning system using a potential alternative refrigerant, R152a. A series of performance tests have been carried out and cycle characteristics such as cooling capacity, energy efficiency ratio, suction and discharge pressures, and temperatures are presented, compared to those for the baseline R134a system. Tests were conducted with evaporation temperature of $5^{\circ}C$, condensation temperature of $45^{\circ}C$, subcooling temperature of $5^{\circ}C$, superheating temperature of $5^{\circ}C$, and compressor speed of 500-1500 rpm. The performance of R152a system with readjustment of an expansion valve showed better than those of R134a. The effect of oil on the pressure drop in the evaporator was also addressed.

The Performance of a Heat Pump with a Variation of Expansion Valve at Various Charging Conditions (냉매 충전량과 팽창장치 변화에 따른 열펌프 시스템의 성능특성에 관한 연구)

  • 최종민;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.661-666
    • /
    • 2003
  • Constant area expansion devices such as capillary tubes, short tube orifices are being gradually replaced with electronic expansion valves (EEVs) because of increasing focus on comfort and energy conservation. In this study, the performance of a water-to-water heat pump as a function of refrigerant charge is investigated in steady state, cooling mode operation with expansion devices of a capillary tube and an EEV. The performance of the capillary tube system varies drastically according to the change of refrigerant charge amount and inlet temperature of the secondary fluid in the condenser. Cooling capacity and COP of the EEV system show little dependence on the refrigerant charge, while those are strongly dependent on the secondary fluid temperature at the condenser inlet. In general, for a wide range of operating conditions the EEV system shows much higher performance as compared with the capillary tube system. The performance of the EEV system can be optimized by adjusting EEV opening to maintain a constant superheat at all test conditions.

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Performance Experiment and Exergy Analysis of an Automotive Air-conditioning System (자동차용 에어컨 성능실험과 액서지 해석)

  • 오상한;윤종갑;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.363-370
    • /
    • 2000
  • Experiments have been peformed, using pure refrigerant R134a and a zeotropic refrigerant mixture R290/R600a(60%/40%) and their performances have been analyzed by the first and second laws(exergy method) of thermodynamics. From the experimental results, variations of compressor speed and air temperature have a great effect on the performance of the system. The sum of exergy losses in compressor and evaporator is about 60% of total exergy loss, using refrigerant R134a, so it is necessary to improve the performance of compressor and evaporator. According to the experimental results using refrigerant mixture of R290/R600a(60%/40%), the exergy losses in heat exchange processes are decreased but the exergy loss in throttling process is increased. The performance of the system has been improved by 20∼30% compared with that of R134a and exergy losses have been also reduced.

  • PDF