• Title/Summary/Keyword: subcellular responses

Search Result 25, Processing Time 0.02 seconds

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.

Human Lung Insults due Air Pollutant -A Review for Priority Setting in the Research- (대기오염에 의한 폐장조직 손상 -연구방향의 설정을 위한 논의-)

  • 김건열;백도명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 1992
  • Much progress has been made in understanding the subcellular events of the human lung injuries after acute exposure to environmental air pollutants. Host of those events represent oxidative damages mediated by reactive oxygen species such as superoxide, hydrogen peroxide, and the hydroxy, free radical. Recently, nitric oxide (NO) was found to be endogenously produced by endothelial cells and cells of the reticulo-endothelial system as endothelialderived relaxation factor (EDRF) which is a vasoactive and neurotransmitter substance. Together with superoxide, NO can form another strong oxidant, peroxonitrite. The relative importance of exogenous sources of $N0/N0_2$ and endogenous production of NO by the EDRF producing enzymes in the oxidative stresses to the heman lung has to be elucidated. The exact events leading to chronic irreversible damage are still yet to be known. From chronic exposure to oxidant gases, progressive epithelial and interstitial damages develop. Type I epithelial cells become thicker and cover a smaller average alveolar surface area while thee II cells proliferate instead. Under acute damages, the extent of loss of the alveolar epithelial cell lining, especially type II cells appears to be a good predictor of the ensuing irreversible damage to alveolar compartment. Interstitial matrix undergo remodeling during chronic exposure with increased collagen fibers and interstitial fibroblasts. However, Inany of these changes can be reversed after cessation of exposure. Among chronic lung injuries, genetic damages and repair responses received particular attention in view of the known increased lung cancer risks from exposure to several air pollutants. Heavy metals from foundry emission, automobile traffics, and total suspended particulate, especially polycystic aromatic hydrocarbons have been positively linked with the development of lung cancer. Asbestos in another air pollutant with known risk of lung cancer and mesothelioma, but asbestos fibers are nonauthentic in most bioassays. Studies using the electron spin resonance spin trapping method show that the presence of iron in asbestos accelerates the production of the hydroxy, radical in vitro. Interactions of these reactive oxygen species with particular cellular components and disruption of cell defense mechanisms still await further studies to elucidate the carcinogenic potential of asbestos fibers of different size and chemical composition. The distribution of inhaled pollutants and the magnitude of their eventual effects on the respiratory tract are determined by pollutant-independent physical factors such as anatomy of the respiratory tract and level and pattern of breathing, as well as by pollutant-specific phyco-chemical factors such as the reactivity, solubility, and diffusivity of the foreign gas in mucus, blood and tissue. Many of these individual factors determining dose can be quantified in vitro. However, mathematical models based on these factors should be validated for its integrity by using data from intact human lungs.

  • PDF

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.

Bioaccumulation of Heavy Metals in Ruditapes philippinarum (바지락 (Ruditapes philippinarum) 의 중금속 축적에 관한 연구)

  • Lee, Yong-Seok;Jo, Yong-Hun;Byun, In-Sun;Kang, Se-Won;Cho, Eun-Mi;Han, Yeon-Soo;Choi, Sang-Haeng;Park, Hong-Seog;Kho, Weon-Gyu;Ahn, In-Young;Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.22 no.2
    • /
    • pp.157-165
    • /
    • 2006
  • The present study was conducted to confirm that a bivalve Ruditapes philippinarum can be used as a biomarker for the monitoring of the heavy metal pollution in the silt of the marine environment. The clams were collected from the silt of Cheonsu-bay, Buheung-ri, and Tan-island of the West Sea, Korea. To observe the normal structures of the target organs (hepatopancreas and gill), they were dissected out for the immunohistochemical study and the electron microscopy with TEM, SEM, and SEM-EDS. The immunohistochemical study showed that the interdiverticular connective tissues of the hepatopancreas, and the outer epithelium of the gill lamellae was strongly reacted to anti-metallothionein (MT), indicating the presence of MT, a metal-binding protein, involved in metal detoxifying process. According to the examinations under the TEM, the epithelial cells of the hepatopancreas of the clams collected from polluted area (Tan-island) showed certain changes such as swollen rER, swollen nuclear envelope and inclusion bodies in the nulcei. In the SEM-EDS analysis, tissue of the hepatopancreas showed relatively higher concentration of S, Zn, and Cd. These elements are supposed to be concerning with the MT-reaction in the hepatopancreas. Considering that the coastal bivalve R. philippinarum showed immediate subcellular responses to heavy metal pollution in the overall experiments conducted, this species might act as one of efficient biomarkers for the heavy metal contamination in the marine environment.

  • PDF