• Title/Summary/Keyword: subband acoustic echo canceller

Search Result 14, Processing Time 0.026 seconds

Subband Acoustic Echo Canceller with Double-Talk Detector Using Weighted Overlap-add Method and Dedicated filter (동시 통화검출 전용필터와 가중 Overlap-Add 기법을 적용한 서브밴드 음향 반향 제거기)

  • 고충기;이원철;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.35-46
    • /
    • 2000
  • In this paper, we propose a subband acoustic echo canceller using the weighted Overlap-add adaptive filter bank to prevent the decrease of convergence speed in full-band US processing, and make it possible to realize the adaptive filter in block-parallel processing, this paper introduces the weighted overlap-add technique for subband echo canceller. Moreover, we propose a new double-talk detector which employs dedicated filter in addition to the energy comparison method simultaneously. The computer simulation results show that the performance of the proposed subband adaptive echo canceller double-talk detection

  • PDF

Study on Improvement of Convergence Rate of Acoustic Echo Canceller (음향 반향 제거기의 수렴속도 개선에 대한 연구)

  • Kang, Hee Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.1
    • /
    • pp.66-69
    • /
    • 2009
  • An adaptive echo canceller is necessary for an application such as a speakerphone, 3G image telephony and VoIP service system. These echo cancellers need to have many taps for filtering echo signals. Many taps cause computation data to increase and convergence speed to be low. To overcome these problems, An adaptive echo canceller with the advanced convergence speed is proposed in this paper. To improve the speed, we divide an echo band into subbands and place a subband filter to be adaptive for each subband. Each subband filter recognizes the echo signal as subband echo signals. So, dynamic range of subband is small, the convergence speed is fast. Moreover, as the number of Tap and weight update are estimated in each subband, the implementation complex of a adaptive filter is low.

  • PDF

A comparative study of full-band and sub-band approaches to acoustic echo cancellation (음향 피드백 제거를 위한 전대역, 협대역 적응 필터의 비교)

  • 신민철;김상명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.645-651
    • /
    • 2003
  • The system in which a microphone and a loudspeaker are simultaneously used can cause an echo. The echo is caused by feedback between the output of the loudspeaker and the input of the microphone. The acoustic echo canceller is a device to cancel the echo in a communication system. Its general procedure for cancellation is first estimating the plant response of the feedback path and then eliminating the feedback signal from the input signal. In this paper, full-band and sub-band approaches are compared by using some simulation examples.

  • PDF

The Wavelet Transform Based Subband Adaptive Acoustic Echo Canceller with Noise Cancellation Property (잡음제거 특성을 갖는 웨이브릿변환 기반 서브밴드 적응 음향반향제거기)

  • 박재우;안주원;권기룡;문광석;김강언
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.7-10
    • /
    • 2000
  • This paper focuses on the development of speech enhancement techniques for hands-free audio terminals, including two major problems : noise cancellation and acoustic echo cancellation. The objective is to find a joint structure to get a near-end speech signal with minimum distortion and low levels of echo and noise. To solve the two problems, a new promising technique is studied and tested in computer simulation conditions.

  • PDF

A Study on the Design of Integrated Speech Enhancement System for Hands-Free Mobile Radiotelephony in a Car

  • Park, Kyu-Sik;Oh, Sang-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.45-52
    • /
    • 1999
  • This paper presents the integrated speech enhancement system for hands-free mobile communication. The proposed integrated system incorporates both acoustic echo cancellation and engine noise reduction device to provide signal enhancement of desired speech signal from the echoed plus noisy environments. To implement the system, a delayless subband adaptive structure is used for acoustic echo cancellation operation. The NLMS based adaptive noise canceller then applied to the residual echo removed noisy signal to achieve the selective engine noise attenuation in dominant frequency component. Two sets of computer simulations are conducted to demonstrate the effectiveness of the system; one for the fixed acoustical environment condition, the other for the robustness of the system in which, more realistic situation, the acoustic transmission environment change. Simulation results confirm the system performance of 20-25dB ERLE in acoustic echo cancellation and 9-19 dB engine noise attenuation in dominant frequency component for both cases.

  • PDF

Design of M-Channel IIR Cosine-Modulated Filter Bank and Application to Acoustic Echo Cancellation (M 채널 IIR Cosine-Modulated 필터 뱅크의 설계와 음향 반향 제거에서 응용)

  • Kim, Sang-Gyun;Yoo, Chang-Dong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.556-563
    • /
    • 2002
  • In this paper, a novel method for designing an M-channel, causal, stable IIR cosine-modulated filter bank (CMFB) with near PR property is proposed. The IIR prototype filter is designed with a simple constraint using lattice stucture with 1st order allpass filter components. The IIR prototype filter which is designed by the proposed method has higher stopband attenuation and sharper roll-off characteristic than the one which is designed by the previously proposed method with similar complexity. The proposed M-channel IIR CMFB which is designed from this IIR prototype filter is applied to subband acoustic echo canceller (AEC). We obtained about 15dB higher ERLE using this subband AEC than when M-channel FIR subband AEC with similar complexity.

Efficient Acoustic Echo Cancellation System for Distant-Talking Automatic Speech Recognition (원거리 음성 인식을 위한 효율적인 에코제거 시스템)

  • Kim, Ki-Beom;Kim, Sang-Yoon;Lee, Woo-Jung;Kwon, Min-Seok;Ko, Byeong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.150-155
    • /
    • 2014
  • 본 논문에서는, 원거리 음성인식을 위한 서브밴드 필터링 기반의 빠르고 효율적인 에코제거 시스템을 제안한다. 제안하는 에코제거 시스템은 우선 채널간 유사도 (correlation) 가 높을 경우 적응필터가 오작동하는 것을 방지하기 위해 spatial decorrelation 을 적용하게 된다. 그리고 tree 형태를 가지는 IIR filterbank 기반의 subband 구조를 채택함으로써, 적은 차수로도 효과적인 analysis, synthesis 필터링을 수행할 수 있도록 한다. 이 과정에서 불가피하게 발생하는 서브 밴드간 spectral aliasing은 notch filter를 적용해 해결할 수 있다. 또한 적응 필터로는 improved proportionate normalized least-mean-square (IP-NLMS) 알고리즘을 사용해 수렴속도 및 에코제거 성능에서 우수함을 확인하였다. 마지막으로 decision-directed estimation 기반의 residual echo suppressor를 적용해 잔여 에코를 제거하게 된다. 본 논문에서는 각 단계를 구성하게 된 이론적인 배경을 소개하고, 실제 에코가 존재하는 환경에서 ERLE, 원거리 음성 인식률, computational complexity를 통해 제안하는 에코제거 시스템의 효과를 입증하도록 한다.

  • PDF

A Study on the Robust Double Talk Detector for Acoustic Echo Cancellation System (음향반항 제거 시스템을 위한 강인한 동시통화 검출기에 관한 연구)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2003
  • Acoustic Echo Cancellation(m) is very active research topic having many applications like teleconference and hands-free communication and it employs Double Talk Detector(DTD) to indicate whether the near-end speaker is active or not. However. the DTD is very sensitive to the variation of acoustical environment and it sometimes provides wrong information about the near-end speaker. In this paper, we are focusing on the development of robust DTD algorithm which is a basic building block for reliable AEC system. The proposed AEC system consists of delayless subband AEC and narrow-band DTD. Delayless subband AEC has proven to have excellent performance of echo cancellation with a low complexity and high convergence speed. In addition, it solves the signal delay problem in the existing subband AEC. On the other hand, the proposed narrowband DTD is operating on low frequency subband. It can take most advantages from the narrow subband such as a low computational complexity due to the down-sampling and the reliable DTD decision making procedure because of the low-frequency nature of the subband signal. From the simulation results of the proposed narrowband DTD and wideband DTD, we confirm that the proposed DTD outperforms the wideband DTD in a sense of removing possible false decision making about the near-end speaker activity.

Subband Acoustic Echo Canceller with Double-Talk Detector using Weighted Over1ap-add method (가중 Overlap-Add 기법을 적용한 서브밴드 반향 제거기와 새로운 동시 통화 검출기)

  • 고충기;이원철
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.541-544
    • /
    • 2000
  • 본 논문은 부밴드별 반향제거 필터 뱅크를 구현하기 위한 가중 Overlap-add 적응필터를 이용한 단일 채널 음향 반향 제거기를 제안한다. 기준 입력 신호의 고유치 분포율에 의존하여 수렴 특성이 결정되는 NLSM알고리즘을 사용하여 전대역 처리 과정에서 발생하는 수렴성능의 저하를 방지하고, 효율적인 블록별 병렬 처리가 가능한 부밴드 처리기법인 가중 Overlap-add 방식을 적용한 적응 반향제거기의 성능을 고찰한다 또한 본 논문에서는 동시 통화 검출을 위한 전용 필터와 에너지 비교 방법을 동시에 사용하는 새로운 형태의 동시통화 검출 기법을 제안한다.

  • PDF

Nonuniform Delayless Subband Filter Structure with Tree-Structured Filter Bank (트리구조의 비균일한 대역폭을 갖는 Delayless 서브밴드 필터 구조)

  • 최창권;조병모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2001
  • Adaptive digital filters with long impulse response such as acoustic echo canceller and active noise controller suffer from slow convergence and computational burden. Subband techniques and multirate signal processing have been recently developed to improve the problem of computational complexity and slow convergence in conventional adaptive filter. Any FIR transfer function can be realized as a serial connection of interpolators followed by subfilters with a sparse impulse response. In this case, each interpolator which is related to the column vector of Hadamard matrix has band-pass magnitude response characteristics shifted uniformly. Subband technique using Hadamard transform and decimation of subband signal to reduce sampling rate are adapted to system modeling and acoustic noise cancellation In this paper, delayless subband structure with nonuniform bandwidth has been proposed to improve the performance of the convergence speed without aliasing due to decimation, where input signal is split into subband one using tree-structured filter bank, and the subband signal is decimated by a decimator to reduce the sampling rate in each channel, then subfilter with sparse impulse response is transformed to full band adaptive filter coefficient using Hadamard transform. It is shown by computer simulations that the proposed method can be adapted to general adaptive filtering.

  • PDF