• Title/Summary/Keyword: sub-tractive proteomics

Search Result 2, Processing Time 0.015 seconds

Discovering Novel Genes of poultry in Genomic Era

  • S.K. Kang;Lee, B.C.;J.M. Lim;J.Y. Han;W.S. Hwang
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2001
  • Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.

  • PDF

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.