• Title/Summary/Keyword: sub-stream

Search Result 348, Processing Time 0.031 seconds

An Investigation on Dynamic Behaviors of Single Vortex with CO2 Dilution in a CH4-Air Jet Diffusion Flame (CH4공기 제트 확산화염에서 CO2 첨가에 따른 단일 와동의 동적거동에 관한 연구)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1209-1219
    • /
    • 2003
  • The dynamic behaviors of the single vortex interacting with $CH_4-Air$ jet diffusion flame are investigated numerically. The numerical method is based on a predict-corrector scheme for a low Mach number flow. A two-step global reaction mechanism is adopted as a combustion model. Studies are conducted in fixed initial velocities for the three cases according as where $CO_2$ is added; (1) without dilution, (2) dilution in fuel stream and (3) dilution in oxidizer stream. A single vortex is generated by an axisymmetric jet, which is made by an impulse of a cold fuel when a flame is developed entirely in a computational domain. The simulation shows that $CO_2$ dilution in fuel stream results in somewhat larger vortex radius, and greater amount of entrainment of surrounding fluid than in other cases. Thus, the dilution of $CO_2$ in fuel stream enhances the mixing in single vortex and increases the stretching of the flame surface. The budgets of the vorticity transport equation are examined to reveal the mechanism of vortex formation when $CO_2$ is added. It is found that, in the case of $CO_2$ dilution in fuel stream, the vortex destruction due to volumetric expansion and the vortex production due to baroclinic torque are more dominant than in other cases.

Removal Efficiency of Harmful Substances in Side-stream Tobacco Smoke by the Doping Components of Commercial TiO2 Photocatalysts (시판용 TiO2 광촉매의 doping 성분에 따른 비주류 담배연기의 유해물질 제거효율)

  • Kim, Tae-Young;Cho, Yeong-Tae;Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.565-570
    • /
    • 2017
  • Tobacco smoke emitted during smoking is divided into a main-stream and side-stream smoke. Most of the tobacco smoke that spreads to a room while smoking is a side-stream one. The side-stream tobacco smoke is two to three times more harmful than that of the main-stream tobacco smoke. In this study, the removal efficiency of CO, $H_2S$, $NH_3$ and HCHO in a side-stream tobacco smoke using the doping component of $TiO_2$ photocatalysts was confirmed. As a result, CO was removed up to 78.37%, which indicated that the $TiO_2$ photocatalytic process is effective for CO removal. Also, the removal efficiencies of CO, $H_2S$ and HCHO were greatly affected by the amount of doped O and Si components of the $TiO_2$ photocatalyst. In conclusion, the more doped O and Si components had, the higher removal efficiencies of harmful substances were achieved.

A Numerical Study on Chemical Effects of Co2 Addition to Oxidizer and Fuel Streams in H2-O2 Counterflow Diffusion Flames (수소-산소 대향류 확산 화염에서 산화제와 연료측에 첨가된 Co2의 화학적 효과에 관한 수치해석 연구)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.371-381
    • /
    • 2004
  • Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.

Estimated Headwater Stream Temperature Using Environmental Factors with Seasonal Variations in a Forested Catchment (환경인자를 이용한 산지계류의 계절별 수온변화 예측)

  • Nam, Sooyoun;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2020
  • To estimate headwater stream temperature with seasonal variations, we analyzed precipitation, runoff and air temperature in experimental forest of Kangwon National University, Gangwon-do (2017~2018 years). The daily mean value of headwater stream temperature for spring was 6.9~17.7℃ and correlated with air temperature, that for summer and fall were 12.2~26.3℃ and 3.6~19.3℃, correlated with air temperature and runoff. Based on seasonal variations, we applied for stepwise multiple linear regression analyses to estimate headwater stream temperature with seasonal variations. The equations were headwater stream temperature(WT)spring=(0.553×Air temperature)+(0.086×Runoff)+4.145 (R2=0.505; p<0.01), WTsummer=(0.756×Air temperature)+(-0.072×Runoff)+2.670 (R2=0.510; p<0.01), and WTfall=(0.738×Air temperature)+(0.028×Precipitation)+2.660 (R2=0.844; p<0.01). The coefficient of determination (R2) was greater than when it was estimated by air temperature in all seasons and progressively increased from spring to winter. Therefore, we indicated difference on estimated magnitude of stepwise multiple linear regression, due to effects on headwater stream temperature of different environmental factors with seasonal variations. Furthermore, temporal factors with spatial characteristics (e.g., river versus headwater stream) could be recommended for estimating headwater stream temperature.

Study on the Runoff Estimation Considering Stream Order (하천차수를 고려한 유출량 산정에 관한 연구)

  • Choi, Jong-In;Kang, Sang-Hyeok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.17-27
    • /
    • 2005
  • In this paper the watershed is divided by stream order law of Horton to estimate the runoff with stream order. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A contour model is developed, validated, and adopted to estimate the effective stream order number for the runoff. The results show that the peak discharge which is divided into first river order was close to observed one. The contour model will provide effective informations to plan river works classified by sub-basins for river restoration.

Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul

  • Kim, Hyerin;Cho, Sung-Hyun;Lee, Dongguen;Jung, Youn-Young;Kim, Young-Hee;Koh, Dong-Chan;Lee, Jeonghoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • It is reported that the intensity of rainfall will likely increase, on average, over the world on 2000. For water resources security, many studies for flow paths from rainfall or snowmelt to subsurface have been conducted. In Korea, few isotopic studies for characterizations of flow path have been undertaken. For a better understanding of how water derived from atmosphere moves to subsurface and from subsurface to stream, an analysis of precipitation and stream water using oxygen-18 and deuterium isotopes in a small watershed, Dorim-cheon, Seoul, was conducted with high resolution data. Variations of oxygen-18 in precipitation greater than 10‰ (δ18Omax = −1.21‰, δ18Omin = −11.23) were observed. Isotopic compositions of old water (groundwater) assumed as the stream water collected in advance were −8.98‰ and −61.85‰ for oxygen and hydrogen, respectively. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean value of δ18O. As a result, except of instant dominance of rainfall, contribution of old water was dominant during the study period. On average, 71.3% of the old water and 28.7% of rainfall contributed to the stream water. The results show that even in the small watershed, which is covered with thin soil layer in granite mountain region, the stream water is considerably influenced by old water inflow rather than rainfall.

A Study on the Waterways in Traditional Urban Area of Late 1960s Cheongju Korea (1960년대 후반 청주 도심 내 물길에 관한 연구)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.2
    • /
    • pp.27-34
    • /
    • 2015
  • As part of the waterway restoration to renew traditional urban area, this paper is to assume and research Gyoseocheon(Gyoseo waterway) in Late 1960s Cheongju Korea. The main stream of Gyoseocheon flew from Sangjwagol(the head of the valley) of Uam Mt. to the north gate under Cheongju castle at first, and meandering from Sangdang Park, flew through Sudongseongdang and Bangadari Road to Musimcheon since open railroad of 1920s. This waterway, the eco-friendly figure of Gyoseocheon, that flew to inside the downtown with a planted tree and that is open space was so. The sub stream of Gyoseocheon originated in Seoundong and Tapdong were divided into two parts. One was to join the main stream of Gyoseocheon on Sangdang Park via Munhwadong, and the other was to join the sub stream of Musimcheon at northwest corner via south and west gate of Cheongju castle. This waterway as branch sewer were built into the road culvert.

CFD Simulation of Changesin NOX Distribution according to an Urban Renewal Project (CFD 모델을 이용한 도시 재정비 사업에 의한 NOX 분포 변화 모의)

  • Kim, Ji-Hyun;Kim, Yeon-Uk;Do, Heon-Seok;Kwak, Kyung-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.3
    • /
    • pp.141-154
    • /
    • 2021
  • In this study, the effect of the restoration of Yaksa stream and the construction of an apartment complex by the urban renewal project in the Yaksa district of Chuncheon on air quality in the surrounding area was evaluated using computational fluid dynamics (CFD) model simulations. In orderto compare the impact of the project, wind and pollutant concentration fields were simulated using topographic data in 2011 and 2017, which stand for the periods before and after the urban renewal project, respectively. In the numerical experiments, the scenarios were set to analyze the effect of the construction of the apartment complex and the effect of stream restoration. Wind direction and wind speed data obtained from the Chuncheon Automated Synoptic Observing System (ASOS) were used as the inflow boundary conditions, and the simulation results were weighted according to the frequencies of the eight-directional inflow wind directions. The changes in wind speed and NOX concentration distribution according to the changes in building and terrain between scenarios were compared. As a result, the concentration of NOX emitted from the surrounding roads increased by the construction of the apartment complex, and the magnitude of the increase was reduced as the result of including the effect of stream restoration. The concentration of NOX decreased around the restored stream, while the concentration increased significantly around the constructed apartment complex. The increase in the concentration of NOX around the apartment complex was more pronounced in the place located in the rear of the wind direction to the apartment complex, and the effect remains up to the height of the building. In conclusion, it was confirmed that the relative arrangement of apartment complex construction and stream restoration in relation to the main wind direction of the target area was one of the major factors in determining the surrounding air quality.

Study of BOD5 Variation Patterns with Flow Regime Alteration in the Tributaries (지류하천의 유황분석을 통한 BOD5 농도변화 유형 분석)

  • Jeong, Woohyeuk;Kim, Youngil;Kim, Hongsu;Moon, Eunho;Park, Sanghyun;Yi, Sangjin;Jeong, Sangman;Cho, Byungwook;Choi, Jeongho
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.499-508
    • /
    • 2011
  • We analyzed the variations of water quality with flow regime alterations to determine the characteristics of the stream where the stream management is considerably difficult due to the high variability of the flow rates. In this study, both flow rates and water qualities were monitored at the tributaries, 34 in count, of both Geum River and Sabgyo Lake Basins. The variation of water qualities were divided into 2 types, based on their stream flow rates, known as Type I and Type II. If the water quality of a stream increases during low flow rate periods compared with high flow rate periods, it is classified as Type I; if the water quality of the stream increases during high flow rate periods compared with low flow rate periods, it falls under Type II. The analysis for the variations of water qualities, of all 43 basins, resulted to 24 basins under Type I and Nineteen 19 basins under Type II. The variations of water qualities were analyzed first by using Regression Analysis followed by Statistical Analysis. The average slope of the variations of water qualities and the slope of the standard deviations were 0.00135 and 0.00477, respectively. The Probability Distributions of both Type I and Type II basins were 61.1% and 38.9%, respectively. The basin having a probability distribution of 61.1% and is also known as Type I, increases during periods of low flow rates, due to the presence of point sources. Therefore, the basin should be enforced with stream management. Before the stream management can be implemented in all streams falling under Type II, the sources of contaminants should first be estimated. These contaminants can be classified into two parts, the first is Point source pollution and the second is Non-point source pollution, where the Non-Point source pollution can be sub-divided into two types, with storm runoff and without storm runoff.

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.