• Title/Summary/Keyword: sub-stream

Search Result 349, Processing Time 0.031 seconds

Effect of Cerium loading on Stability of Ni-bimetallic/ZrO2 Mixed Oxide Catalysts for CO Methanation to Produce Natural Gas

  • Bhavani, Annabathini Geetha;Youn, Hyunki
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.269-274
    • /
    • 2018
  • All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.

Evaluation of decontamination factor of radioactive methyl iodide on activated carbons at high humid conditions

  • Choi, Byung-Seon;Kim, Seon-Byeong;Moon, Jeikwon;Seo, Bum-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1519-1523
    • /
    • 2021
  • Radioactive iodine (131I) released from nuclear power plants has been a critical environmental concern for workers. The effective trapping of radioactive iodine isotopes from the off-gas stream generated from nuclear facilities is an important issue in radioactive waste treatment systems evaluation. Numerous studies on retaining methyl iodide (CH3I131) by impregnated activated carbons under the high content of moisture have been extensively studied so far. But there have been no good results on how to remove methyl iodide at high humid conditions up to now. A new challenge is to introduce other promising impregnating chemical agents that are able to uptake enough radioactive methyl iodide under high humid conditions. In order to develop a good removal efficiency to control radioiodine gas generated from a high humid process, activated carbons (ACs) impregnated with triethylene diamine (TEDA) and qinuclidine (QUID) were prepared. In addition, the removal efficiencies of the activated carbons (ACs) under humid conditions up to 95% RH were evaluated by applying the standard method specified in ASTM-D3808. Quinuclidine impregnated activated carbon showed a much higher decontamination factor above 1,000, which is enough to meet the regulation index for the iodine filters in nuclear power plants (NPPs).

Enhancement of the energy efficiency of hydrogen SOFC system by integrated cold energy utilization and waste heat recovery method

  • Nguyen Quoc Huy;Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.160-161
    • /
    • 2022
  • Hydrogen is bridge fuel with high energy content and environmentally friendly to satisfy the stringent IMO regulation relating to greenhouse gas (GHG) emissions. There is growing interest in hydrogen in numerous nations and regions illustrated by an extensive range of research and development in technology. Regarding maritime applications, researchers have recognized the utilization of hydrogen as a fuel for fuel cells, a device that converts the chemical energy of the fuel to electrical energy. Solid oxide fuel cell (SOFC), with high working temperature, is easy to combine with the waste heat recovery cycles/devices to increase output power and thermodynamic performances as well. Furthermore, the cold energy from liquid hydrogen supplied to SOFC can also be used to generate more power. In this study, we proposed a SOFC integrated system with the idea of combining the waste heat recovery from the SOFC exhaust stream and cold energy utilization from LH2. The designation is aimed to target small-scale vessel which uses electric propulsion for short distances voyage.

  • PDF

A Study on Low-Temperature Oxidation Reactivity of Pt/ZrO2·SO42-Catalyst (ZrO2·SO42-에 담지된 백금촉매의 저온산화반응성에 대한 연구)

  • Kim, Kiseok;Lee, Tae Jung;Kim, Byoung Sam;Kim, Du Soung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.141-148
    • /
    • 1998
  • Reactivity of Pt catalysts(0.2, 0.5 wt% Pt) supported on solid super acid, $ZrO_2$ $SO_4{^{2-}}$ for low-temperature oxidation was investigated for complete oxidation of cyclohexane. Catalytic activity measured as reactant conversion in a packed-bed tubular reactor increased in accordance with the acidity and specific surface area of the catalyst activity and specific surface area of $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst were diminished by adding potassium during catalyst preparation. the catalyst activity decreased in accordance with the amount of potassium added. In addition, $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst exhibited an activity greater than that of a $Pt/SiO_2$ or $Pt/Al_2O_3$ catalyst possessing much larger specific surface area at $250^{\circ}C$ for the reactant stream of 15.000 ppm cyclohexane concentration and $18,000hr^{-1}$ space velocity, a cyclohexane conversion as high as 96% was obtained over 0.2 wt% $Pt/ZrO_2$ $SO_4{^{2-}}$, whereas cyclohexane conversions over 0.2 wt% $Pt/SiO_2$ and 0.2 wt% $Pt/Al_2O_3$ were 83 and 79%, respectively.

  • PDF

Oxidative Dehydrogenation of 1-butene over BiFe0.65MoP0.1 Catalyst: Effect of Phosphorous Precursors (BiFe0.65MoP0.1 촉매 상에서 1-부텐의 산화탈수소화 반응 : 인 전구체의 영향)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.824-830
    • /
    • 2015
  • The influence of phosphorous precursors, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, $H_3PO_4$, $(C_2H_5)_3PO_4$, and $P_2O_5$, on the catalytic performance of the $BiFe_{0.65}MoP_{0.1}$ catalysts in the oxidative dehydrogenation of 1-butene to 1,3-butadiene was studied. The catalysts were characterized by XRD, $N_2$-sorption, ICP, SEM and TPRO analyses. It was not observed big difference on the physical properties of catalysts in accordance with used different phosphorous precursors, however, the catalytic performance was largely depended on the nature of the phosphorous precursors. Of various precursors, the $BiFe_{0.65}MoP_{0.1}$ oxide catalyst, which was prepared from a phosphoric acid precursor, showed the best catalytic performance. Conversion and yield to butadiene of the catalyst showed 79.5% and 67.7%, respectively, after 14 h on stream. The cation of phosphorous precursors was speculated to affect the lattice structure of the catalysts during catalyst preparation and this difference was influenced on the re-oxidation ability of the catalysts. Based on the results of TPRO, it was proposed that the catalytic performance could be correlated with re-oxidation ability of the catalysts.

Characteristics of Temporal Variation on Water Quality (T-P, T-N, CODMn, SS, BOD5) in the Jungrang Stream during Rainfall Event (강우 시 중랑천 유역의 수질(T-P, T-N, CODMn, SS, BOD5)변화 특성)

  • Jung, Jaehyung;Zhou, Xing;Lee, Taejin;Kwon, O-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.412-420
    • /
    • 2014
  • Water quality variations were investigated at 4 locations of Jungrang river (upper, middle and lower basins) during a period of 3 rainfall events. During the rainfall, concentrations of $COD_{Mn}$, SS and $BOD_5$ significantly increased, while the concentration of T-N decreased and that of T-P remained relatively constant. This pattern became more apparent as the level of accumulative precipitation and rainfall intensity increased. Simple regression analysis showed that the accumulative precipitation was positively correlated with all water quality pollutants except for T-N. With increasing accumulative precipitation, the concentration of T-N decreased, while the others increased. $R^2$ of simple regressions of hourly average rainfall intensity and water quality pollutants, showed wider range of variation ranged from 0.483 to 0.992, which indicated a strong correlation. The stronger the hourly average rainfall intensity, the more T-N and T-P in the upper basin, more $COD_{Mn}$ in the middle and lower basins, more SS with gradual increase from upper to lower areas, and more $BOD_5$ with gradual decrease from upper to lower region. Simple regression showed that water quality pollution in the upper basin was more sensitive to an increase of rainfall discharge than that in the middle and lower areas.

Ichthyofauna and Fish Community Structure in the Hoecheon Stream and Some Adjacent Tributaries of the Nakdonggang River, Korea (회천 및 인접 소하천들의 어류상과 군집 구조)

  • Chae, Byung Soo;Kim, Sang Ki;Kang, Yeong Hoon;Heo, Nam Soo;Yoo, Dong Uk;Park, Jae Min;Ha, Heon Uk
    • Korean Journal of Ichthyology
    • /
    • v.29 no.3
    • /
    • pp.205-217
    • /
    • 2017
  • Fauna of freshwater fish and community structure were investigated at 24 stations in the Hoecheon Stream and some adjacent tributaries of the Nakdonggang River, Korea from July 2016 to August 2017. During the period 42 species and 4 types belonging to 32 genera and 11 families were collected. In this collection fishes of Cyprinidae were 24 species and 4 types, most numerous possessing 59.1% of all. There were 16 Korean endemic species including Acheilognathus yamatsutae and Odontobutis platycephala, 3 endangered species such as Pseudobagrus brevicorpus and Koreocobitis naktongensis (rank I) and Culter brevicauda (rank II) and 2 exotic species such as Micropterus salmoides and Lepomis macrochirus. Fish species transferred from other native rivers were 4 species including Opsariichthys uncirostris amurensis, Hemiculter eigenmanni, Odontobutis interrupta and Tridentiger brevispinis. Dominant species was Zacco koreanus NS type (19.2%) and sub-dominant species was Z. platypus R type (16.1%). The structure of fish community in the Hoecheon Stream was very stable and diverse in having diversity 2.91, evenness 0.77, dominance 0.35 and species richness 4.67. Fish community was divided into 4 groups such as upper, middle, midlower and lower reach group based on similarity among surveyed stations.

Finding the time sensitive frequent itemsets based on data mining technique in data streams (데이터 스트림에서 데이터 마이닝 기법 기반의 시간을 고려한 상대적인 빈발항목 탐색)

  • Park, Tae-Su;Chun, Seok-Ju;Lee, Ju-Hong;Kang, Yun-Hee;Choi, Bum-Ghi
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.3
    • /
    • pp.453-462
    • /
    • 2005
  • Recently, due to technical improvements of storage devices and networks, the amount of data increase rapidly. In addition, it is required to find the knowledge embedded in a data stream as fast as possible. Huge data in a data stream are created continuously and changed fast. Various algorithms for finding frequent itemsets in a data stream are actively proposed. Current researches do not offer appropriate method to find frequent itemsets in which flow of time is reflected but provide only frequent items using total aggregation values. In this paper we proposes a novel algorithm for finding the relative frequent itemsets according to the time in a data stream. We also propose the method to save frequent items and sub-frequent items in order to take limited memory into account and the method to update time variant frequent items. The performance of the proposed method is analyzed through a series of experiments. The proposed method can search both frequent itemsets and relative frequent itemsets only using the action patterns of the students at each time slot. Thus, our method can enhance the effectiveness of learning and make the best plan for individual learning.

  • PDF

Correlationship Analysis of Physical Stream Assessment (물리적인 하천평가 체계의 상관성 분석)

  • Kim, Ki Heung;Park, Hyun Sub
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.546-550
    • /
    • 2017
  • 하천의 수리 및 하도의 특성으로 대표되는 물리적 환경(하도 및 수리 특성)은 생태계 기반으로서 수질특성과 더불어 생물에 미치는 영향이 아주 크다. 따라서 하천의 물리적 환경을 진단하고 평가하는 경우에는 상 중 하류의 위치에 따른 하도의 지형학적 특성과 하천의 규모 및 유량의 크기 등에 따라 하천의 유형을 분류하고 그 유형별 특성에 따라 하천환경의 평가시스템을 구축할 필요가 있다. 1980년 후반 이후에는 세계 각국에서 환경보전, 하천복원 및 하천관리 등 종합적인 하천공학적 관점에서 적용할 수 있는 하천분류체계가 제시되었으며 1990년대 이후 선진국들은 정성적 또는 정량적인 하천의 서식환경 평가시스템을 구축하여 적용하고 있으며 대표적으로 정량적 평가시스템을 운영하는 국가는 독일과 미국이고, 정성적 평가시스템을 운영하는 국가는 영국이며, 호주는 영국과 미국의 평가시스템을 통합한 시스템을 운영하고 있다. 한편, 국내에서는 하천환경에서 생태계 기반인 하천의 물리적 특성(구조)에 대한 평가 및 진단 절차도 없이 시행되고 있는 사례가 대부분이다. 또한 지금까지는 하천의 자연도 평가 연구 등에서 선진국들의 하천환경평가시스템을 여과 없이 적용함으로써 국내의 하천특성을 제대로 반영하지 못하는 문제점을 노출하고 있다. 따라서 국내 하천의 물리환경 평가시스템에서는 생물 서식의 기반이 되는 하천의 하도지형 특성 및 수리특성을 반영할 수 있어야 한다. 하천평가에 앞서 하천유형 분류에 따른 하도특성은 하상경사에 따라서 급경사 하천(high-gradient stream), 중경사 하천(mid-gradient stream), 완경사 하천(low-gradient stream)으로 구분하였으며 하천의 물리환경 평가시스템의 평가영역 및 평가지표는 정량적 평가시스템을 운영하는 독일(LAWA, 2004)과 미국(EPA, 2004)의 연구결과를 참고하여 공통지표를 추출하고, 우리나라의 하천이용 및 정비현황을 반영하여 하천유형을 3가지로 분류하고 각 하천유형에 대하여 3개 영역 10개 평가지표를 5개 등급으로 구분하여 평가시스템을 구축하였다. 하천에 대한 하천 지형특성과 현황을 조사할 항목은 수리 및 하도영역의 6개 항목, 하안영역의 2개 항목, 하천교란 영역 2개 항목으로 3개 영역으로 구분해서 평가하고 그 점수에 따라 1등급은 매우좋음(1등급)상태의 $20>{\sim}18{\geq}$점, 좋음(2등급)상태의 $18>{\sim}14{\geq}$점, 보통(3등급)상태의 $14>{\sim}8{\geq}$점, 나쁨(4등급)상태의 $8>{\sim}14{\geq}$점, 매우나쁨(5등급)상태의 4>점으로 등급을 산정하였다. 매우 좋음의 1등급은 참조하천이며 좋음~매우나쁨의 2등급~5등급은 비교하천으로 구분하였으며 보통보다 높은 경우는 자연하천, 낮은 경우는 인공하천으로 나누어 서식처 기반에 따라 평가체계를 구축하였다. 한국형 하천환경 물리평가 체계가 확실히 구축되기 위해서는 각자의 평가 등급이 적절하게 평가 되는지를 검증해야 하기 때문에, 본 연구에서는 하천유형별 자연하천과 인공하천을 비교 분석하였고 평가 영역별 평가지표를 기준으로 상관분석을 통한 상관성을 분석하고 더 나아가 가중치의 적절성 및 각각의 등급에 미치는 영향을 검토하고자 한다.

  • PDF