• Title/Summary/Keyword: sub-species

Search Result 1,520, Processing Time 0.035 seconds

Semen evaluation: methodological advancements in sperm quality-specific fertility assessment - A review

  • Tanga, Bereket Molla;Qamar, Ahmad Yar;Raza, Sanan;Bang, Seonggyu;Fang, Xun;Yoon, Kiyoung;Cho, Jongki
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1253-1270
    • /
    • 2021
  • Assessment of male fertility is based on the evaluation of sperm. Semen evaluation measures various sperm quality parameters as fertility indicators. However, semen evaluation has limitations, and it requires the advancement and application of strict quality control methods to interpret the results. This article reviews the recent advances in evaluating various sperm-specific quality characteristics and methodologies, with the help of different assays to assess sperm-fertility status. Sperm evaluation methods that include conventional microscopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, provide precise information related to sperm morphology and function. Moreover, profiling fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. Identification of different sperm proteins and diagnosis of DNA damage has positively contributed to the existing pool of knowledge about sperm physiology and molecular anomalies associated with different infertility issues in males. Advances in methods and sperm-specific evaluation has subsequently resulted in a better understanding of sperm biology that has improved the diagnosis and clinical management of male factor infertility. Accurate sperm evaluation is of paramount importance in the application of artificial insemination and assisted reproductive technology. However, no single test can precisely determine fertility; the selection of an appropriate test or a set of tests and parameters is required to accurately determine the fertility of specific animal species. Therefore, a need to further calibrate the CASA and advance the gene expression tests is recommended for faster and field-level applications.

A LAMP-SNP Assay Detecting C580Y Mutation in Pfkelch13 Gene from Clinically Dried Blood Spot Samples

  • Khammanee, Thunchanok;Sawangjaroen, Nongyao;Buncherd, Hansuk;Tun, Aung Win;Thanapongpichat, Supinya
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • Artemisinin resistance (ART) has been confirmed in Greater Mekong Sub-region countries. Currently, C580Y mutation on Pfkelch13 gene is known as the molecular marker for the detection of ART. Rapid and accurate detection of ART in field study is essential to guide malaria containment and elimination interventions. A simple method for collection of malaria-infected blood is to spot the blood on filter paper and is fast and easy for transportation and storage in the field study. This study aims to evaluate LAMP-SNP assay for C580Y mutation detection by introducing an extra mismatched nucleotide at the 3' end of the FIP primer. The LAMP-SNP assay was performed in a water bath held at a temperature of 56℃ for 45 min. LAMP-SNP products were interpreted by both gel-electrophoresis and HNB-visualized changes in color. The method was then tested with 120 P. falciparum DNA from dried blood spot samples. In comparing the LAMP-SNP assay results with those from DNA sequencing of the clinical samples, the 2 results fully agreed to detect C580Y. The sensitivity and specificity of the LAMP-SNP assay showed 100%. There were no cross-reactions with other Plasmodium species and other Pfkelch13 mutations. The LAMP-SNP assay performed in this study was rapid, reliable, and useful in detecting artemisinin resistance in the field study.

Morphometric variation, genetic diversity and allelic polymorphism of an underutilised species Thaumatococcus daniellii population in Southwestern Nigeria

  • Animasaun, David Adedayo;Afeez, Azeez;Adedibu, Peter Adeolu;Akande, Feyisayo Priscilla;Oyedeji, Stephen;Olorunmaiye, Kehinde Stephen
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.298-308
    • /
    • 2020
  • Genetic diversity among Thaumatococcus daniellii populations in the southwestern region of Nigeria were assessed using morphometric and molecular markers to determine the population structure and existing genetic relationship for its improvement, conservation and sustainable utilisation. Populations from five locations in each of the six states were used for the study. Morphometric data were collected on folia characters and analysed for variability. Genome DNA was isolated from the plant leaf and amplified by polymerase chain reaction with inter-simple sequence repeat markers (ISSR) to determine the allelic polymorphism, marker effectiveness and genetic relationship of the population. The results showed significant variations in petiole length and leaf dimensions of the populations within and across the states. These morphometric traits are the major parameters that delimit the populations and they correlated significantly at P≤0.05. Analysis of the electrophoregram showed that the ISSR markers are effective for the diversity study. A total of 136 loci were amplified with an average of 7.16 loci per marker, 63.2% of the loci were polymorphic. The Principal Coordinate Analysis revealed that seven factors accounted for 81.6% of the variation and the dendrogram separated the populations into two major groups at a genetic distance of 10 (about 90% similarity) with sub-groups and clusters. Most populations within the state had a high degree of similarity, nonetheless, strong genetic relationship exists among populations from different states. The close relationship between populations across the states suggests a common progenitor, which are likely separated by ecological or geographical isolation mechanisms.

Anti-inflammatory Effects of Cnidium Rhizoma against Intracerebral Hemorrhage in Rats (천궁(川芎)의 뇌조직출혈 흰쥐 힝염증반응에 대한 연구)

  • Baek, Dong-Ha;Kim, Do-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.33-38
    • /
    • 2014
  • Objectives : Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including cytokines, extracellular proteases, and reactive oxygen species. Cnidium Rhizoma effects the anti-inflammatory, antioxidant, suppression of the microglia activation and protection of the nerve cell injury. For this reason, we investigated the anti-inflammatory effects of water extracts of Cnidium Rhizoma on intracerebral hemorrhage (ICH). Method : ICH was induced by the stereotaxic intracerebral injection of bacterial collagenase type IV (0.23 $U/{\mu}{\ell}$, 0.1 ${\mu}{\ell}/min$) in Sprague-Dawley rats. We orally administrated once 3 hours after ICH, then 2 times at 24-hour intervals the water extracts of Cnidium Rhizoma (500 mg/kg), myeloperoxidase (MPO) was observed by using immunofluorescense and expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and microglia were observed by using immunohistochemistry. Results : Infiltration of MPO expressing neutrophil, expression of iNOS and TNF-${\alpha}$ and activated microglia were significantly reduced in peri-hematoma of the rats fed with water extracts of Cnidium Rhizoma. Conclusion : These results demonstrated that water extracts of Cnidium Rhizoma suppressed an inflammatory reaction through inhibition of MPO, iNOS and TNF-${\alpha}$ positive cell and activated microglia number in peri-hematoma of ICH-induced rats.

Picropodophyllotoxin Inhibits Cell Growth and Induces Apoptosis in Gefitinib-Resistant Non-Small Lung Cancer Cells by Dual-Targeting EGFR and MET

  • Jin-Young, Lee;Bok Yun, Kang;Sang-Jin, Jung;Ah-Won, Kwak;Seung-On, Lee;Jin Woo, Park;Sang Hoon, Joo;Goo, Yoon;Mee-Hyun, Lee;Jung-Hyun, Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.200-209
    • /
    • 2023
  • Patients with non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to the tyrosine kinase inhibitor gefitinib, however, the treatment becomes less effective over time by resistance mechanism including mesenchymal-epithelial transition (MET) overexpression. A therapeutic strategy targeting MET and EGFR may be a means to overcoming resistance to gefitinib. In the present study, we found that picropodophyllotoxin (PPT), derived from the roots of Podophyllum hexandrum, inhibited both EGFR and MET in NSCLC cells. The antitumor efficacy of PPT in gefitinib-resistant NSCLC cells (HCC827GR), was confirmed by suppression of cell proliferation and anchorage-independent colony growth. In the targeting of EGFR and MET, PPT bound with EGFR and MET, ex vivo, and blocked both kinases activity. The binding sites between PPT and EGFR or MET in the computational docking model were predicted at Gly772/Met769 and Arg1086/Tyr1230 of each ATP-binding pocket, respectively. PPT treatment of HCC827GR cells increased the number of annexin V-positive and subG1 cells. PPT also caused G2/M cell-cycle arrest together with related protein regulation. The inhibition of EGFR and MET by PPT treatment led to decreases in the phosphorylation of the downstream-proteins, AKT and ERK. In addition, PPT induced reactive oxygen species (ROS) production and GRP78, CHOP, DR5, and DR4 expression, mitochondrial dysfunction, and regulated involving signal-proteins. Taken together, PPT alleviated gefitinib-resistant NSCLC cell growth and induced apoptosis by reducing EGFR and MET activity. Therefore, our results suggest that PPT can be a promising therapeutic agent for gefitinib-resistant NSCLC.

Profiling Metabolites Expressed Corn Root Under Waterlogging

  • Jae-Han Son;Young-Sam Go;Hwan-Hee Bae;Kyeong-Min Kang;Beom-Young Son;Seonghyu Shin;Tae-Wook Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.289-289
    • /
    • 2022
  • Waterlogging tolerance of corn is one of the important factor for cultivate in paddy soil condition to increase cultivation area and self-sufficiency of corn in Korea. In order to develop elite waterlogging tolerance corn, the new corn lines bred by crossing wild corn, Teosinte, and cultivated corn inbred lines. Five accessions among the 2 species, Zea mays sub spp. mexicana and Zea mays spp. parviglumis, of 81 Teosinte were selected through the waterlogging treatment. The waterlogging treatments were implemented for 7 days at the seedling(V3) stage. The inbred lines were developed by crossing 5 teosinte accessions and cultivated corn lines and they were estimated waterlogging tolerance. It was screened and analyzed the metabolites extracted from roots of 19KT-32(KS141 × teosinte) that was treated waterlogging. We selected 8 of 180 metabolites like as γ-aminobutyric acid(GABA), putrescine, citrulline, Gly, and Ala that expression was remarkably changed over 2.5-times, 7 metabolites increased and 1 metabolite decreased in waterlogging, respectively. Glutamate decarboxylase(GAD) catalyzing GABA accumulation gene have 10 haplotypes, and exon1 was highly conserved, but identified to 135 SNPs after the first intron. Among the 135 SNPs, the number of transversion mutations (52) surpassed the number of transition mutations (38). Most of metabolites were related to abiotic stress in plant that it regulated to pH, osmotic pressure K+/Ca++ and ATPase activity. We are analyzing the association using these results for increase breeding efficiency.

  • PDF

Assessment of genetic diversity among wild and captive-bred Labeo rohita through microsatellite markers and mitochondrial DNA

  • Muhammad Noorullah;Amina Zuberi;Muhib Zaman;Waqar Younas;Sadam Hussain;Muhammad Kamran
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.752-761
    • /
    • 2023
  • Genetic diversity serves as the basis for selecting and genetically enhancing any culturable species in aquaculture. Here, two different strains of wild (River Ravi and River Kabul) and six captive-bred strains of Labeo rohita from various provinces were se- lected, and genetic diversity among them was evaluated using three different microsatellite markers, i.e., Lr-28, Lr-29, and Lr-37, and one mitochondrial CO1 (Cytochrome c oxidase subunit 1) gene. Different strains of L. rohita were collected, and part of their caudal fin was cut and preserved in ethanol for DNA extraction and determination of genetic diversity among them. Results in- dicated that selected markers were polymorphic with polymorphic information content (PIC) content values above 0.5 with the highest in Lr-28 followed by Lr-29 and then Lr-37. The observed heterozygosity (Ho) of all strains was higher (Avg: 0.731) but less than the expected heterozygosity (He). Moreover, TMs and WRs showed the highest He, while TKs showed the lowest, He. Over- all, inbreeding coefficient (FIS) values observed for all strains with selected markers were positive. The DNA barcoding with the CO1 gene revealed genetic variation among various strains, as demonstrated by the clades in the phylogenetic tree separating the strains into two distinct clusters that then divided into sub-clusters. In conclusion, TMs showed the highest heterozygosity as compared to other strains. Overall results provide the baseline data for the initiation of the genetic improvement program.

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

Anti-oxidative and Anti-cancer Activities of Methanol Extract of Machaerium cuspidatum (Machaerium cuspidatum 메탄올 추출물의 항산화 및 항암활성에 관한 연구)

  • Jin, Soojung;Oh, You Na;Park, Hyun-jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.432-441
    • /
    • 2016
  • Machaerium cuspidatum, a canopy liana, is a species of genus legume in the Fabaceae family and contributes to the total species richness in the tropical rain forests. In the present study, we investigated the antioxidative and anti-cancer effects of M. cuspidatum and its mode of action. The methanol extract of M. cuspidatum (MEMC) exhibited anti-oxidative activity with an $IC_{50}$ value of $1.66{\mu}g/ml$, and this was attributable to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. MEMC also exhibited a cytotoxic effect and induced morphological changes in a dose-dependent manner in several cancer cell lines including human lung adenocarcinoma A549 cells, human hepatocellular carcinoma HepG2 cells, and human colon carcinoma HT29 cells. Moreover, MEMC treatment induced the accumulation of subG1 population, which is indicative of apoptosis in A549 and HepG2 cells. MEMC-induced apoptosis was confirmed by the increase in Annexin V-positive apoptotic cells and apoptotic bodies using Annexin-V staining and DAPI staining, respectively. Further investigation showed that MEMC-induced apoptosis was associated with the increase in p53 and Bax expression, and the decrease in Bcl-2 expression. In addition, MEMC treatment led to proteolytic activation of caspase-3, 8, and 9 and degradation of poly-ADP ribose polymerase (PARP). Taken together, these results suggest that MEMC may exert a beneficial anti-cancer effect by inducing apoptosis via both the extrinsic and intrinsic pathways in A549 and HepG2 cells.

Breeding and characterization of 'Creamy', a new interspecific hybrid between Pleurotus ferulae and P. tuoliensis (아위느타리와 백령느타리의 종간교잡 품종 '크리미'의 육성 및 특성)

  • Oh, Min-Ji;Shin, Pyung-Gyun;Lim, Ji-Hoon;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.224-229
    • /
    • 2019
  • The two most common mushroom species grown in Korea are pearl oyster mushroom (Pleurotus ostreatus) and king oyster mushroom (P. eryngii). In recent years, the production of king oyster mushroom greatly increased due to the automation of the cultivation facilities, and it became a major export mushroom owing to its excellent shelf life. However, the increase in the production of king oyster mushroom led to a decline in its market price; thus, necessitating the development of new mushroom species that could replace king oyster mushroom, to diversify the mushroom market for the benefit of both, the producers and the consumers. The Mushroom division at the National Institute of Horticultural & Herbal Science (NIHHS) reported the development of a new interspecific hybrid between P. ferulae and P. tuoliensis, referred to as 'Creamy.' Two parental strains KMCC00430 (Bisan2ho, P. ferulae) and KMCC00461 (P. tuoliensis) were selected based on the results of genetic resource analysis, and their monokaryons were collected. About 1,000 Mon-Mon crosses were performed and 73 of them were selected. Following repeated cultivation tests and strain analyses, we selected strain 7773, which had a bright creamy pileus and a thick straight stipe, and named it 'Creamy.' Optimum temperature for mycelial growth of Creamy was 25-30℃, and that for fruiting body growth was 16℃. The pileus, which had a brighter creamy color, was small in size with a diameter of 61.2 mm. Although it was cultivated in suboptimal conditions, such as low temperature and high CO2 concentration, Creamy was characterized by its straight and smooth stipe. Field production tests and further analyses indicated that the yield of Creamy was 5% higher than that of Baekhwang. It is expected that Creamy, the new interspecific hybrid with a bright creamy pileus and a pleasant flavor, will help create new opportunities for mushroom farmers and diversify the mushroom market.