• Title/Summary/Keyword: sub-space reconstruction error

Search Result 2, Processing Time 0.019 seconds

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.

Projective Reconstruction Method for 3D modeling from Un-calibrated Image Sequence (비교정 영상 시퀀스로부터 3차원 모델링을 위한 프로젝티브 재구성 방법)

  • Hong Hyun-Ki;Jung Yoon-Yong;Hwang Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.113-120
    • /
    • 2005
  • 3D reconstruction of a scene structure from un-calibrated image sequences has been long one of the central problems in computer vision. For 3D reconstruction in Euclidean space, projective reconstruction, which is classified into the merging method and the factorization, is needed as a preceding step. By calculating all camera projection matrices and structures at the same time, the factorization method suffers less from dia and error accumulation than the merging. However, the factorization is hard to analyze precisely long sequences because it is based on the assumption that all correspondences must remain in all views from the first frame to the last. This paper presents a new projective reconstruction method for recovery of 3D structure over long sequences. We break a full sequence into sub-sequences based on a quantitative measure considering the number of matching points between frames, the homography error, and the distribution of matching points on the frame. All of the projective reconstructions of sub-sequences are registered into the same coordinate frame for a complete description of the scene. no experimental results showed that the proposed method can recover more precise 3D structure than the merging method.