• Title/Summary/Keyword: sub-millimeter

Search Result 99, Processing Time 0.031 seconds

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

  • Uhm, Won-Young;Lee, Bok-Hyung;Kim, Sung-Chan;Lee, Mun-Kyo;Sul, Woo-Suk;Yi, Sang-Yong;Kim, Yong-Hoh;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, we have designed and fabricated high conversion gain Q-band active sub-harmonic mixers for a receiver of millimeter wave wireless communication systems. The fabricated active sub-harmonic mixer uses 2nd harmonic signals of a low local oscillator (LO) frequency. The fabricated mixer was successfully integrated by using $0.1{\;}\mu\textrm{m}$GaAs pseudomorphic high electron mobility transistors (PHEMTs) and coplanar waveguide (CPW) structures. From the measurement, it shows that maximum conversion gain of 4.8 dB has obtained at a RF frequency of 40 GHz for 10 dBm LO power of 17.5 GHz. Conversion gain from the fabricated sub-harmonic mixer is one of the best reported thus far. And a phase noise of the 2nd harmonic was obtained -90.23 dBc/Hz at 100 kHz offset. The active sub-harmonic mixer also ensure a high degree of isolations, which are -35.8 dB from LO-to-IF and -40.5 dB from LO-to-RF, respectively, at a LO frequency of 17.5 GHz.

Studies of MIMIC Power amplifier for millimeter-waves

  • Rhee, Eung-Ho;Yoon, Jin-seub;Cho, Seung-ki;Yoon, Jin-seub
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1009-1012
    • /
    • 2000
  • In this paper, we have designed and fabricated power PHEMT’s with an unit gate width of 80$\mu\textrm{m}$ and 4 fingers, and MIMIC power amplifiers using the PHEMT’s as well. The PHEMT’s have a 0.2$\mu\textrm{m}$ gate length and source to drain spacing of 3$\mu\textrm{m}$. The characteristics of the fabricated PHEMT’s are 4.08dB of S$\sub$21/ gain at the 35GHz and 317mS/mm of gm, and 62GHz of f$\sub$T/ and 120GHz of f$\sub$max/. The designed and fabricated MIMIC’s power amplifiers with 6 PHEMT’s and MIN capacitors were fully passivated by 1000 Α of Si$_3$N$_4$ film for higher performance and surface protects. The chips were processed using the MINT processes, and size was 3.25 ${\times}$ 1.8$\textrm{mm}^2$. The fabricated MIMIC power amplifiers have RF characteristics such as 11.25dB of S$\sub$21/ gain, 11.37dB of input return-loss and 12.69dB of output return-loss at the 34.55GHz.

  • PDF

Injection Locked Synchronization Characteristics of a Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 출력 발진기의 주입동기 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1700-1705
    • /
    • 2013
  • A second harmonic millimeter wave oscillator utilizing sub-harmonic injection-synchronization is presented. A 8.7GHz oscillator with MES-FET is designed, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as a oscillator in this scheme. Adopting this method, a high sable, high frequency millimeter wave source is obtainable even though self-oscillating frequency of an oscillator is relatively low. The range of injection-synchronization is about 26MHz, and is proportional to the input sub-harmonic power. The spectrum analysis of the 2nd harmonic output frequency shows remarkably decreased the phase noise level.

Wireless Communication using Millimeter-Wave Envelope Detector (밀리미터파 포락선 검파기를 이용한 무선통신)

  • Lee, Won-Hui;Jang, Sung-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.79-82
    • /
    • 2017
  • In this paper, we proposed the wireless communication system using millimeter-wave envelope detector. The sub-harmonic mixer based on schottky barrier diode was used in the transmitter. The receiver was used millimeter-wave envelope detector. The transmitter was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antenna. The receiver was composed of horn antenna, millimeter-wave envelope detector, low pass filter, base band amplifier, and limiting amplifier. At 1.485 Gbps and 300 GHz, the eye-diagram showed a very good performance as measured by the error free. Communication distance is reduced compared to the heterodyne receiver, but compact and lightweight is possible.

V-band CPW receiver chip set using GaAs PHEMT (GaAs PHEMT를 이용한 V-band CPW receiver chip set 설계 및 제작)

  • W. Y. Uhm;T. S. Kang;D. An;Lee, B. H.;Y. S. Chae;Park, H. M.;J. K. Rhee
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.69-73
    • /
    • 2002
  • We have designed and fabricated a low-cost, V-band CPW receiver chip set using GaAs PHEMT technology for the application of millimeter-wave wireless communication systems. Low noise amplifiers and down-converters were developed for this chip set. The fabricated low noise amplifier showed an S$\sub$21/ gain of 14.9 ㏈ at 60 ㎓ and a noise figure of 4.1 ㏈ at 52 ㎓. The down-converter exhibited a high conversion gain of 2 ㏈ at the low LO Power of 0 ㏈m. This work demonstrates that the GaAs PHEMT technology is a viable low-cost solution for V-band applications.

  • PDF

Constrain the SED Type of Unidentified Fermi Objects

  • Tsai, An-Li;Urata, Yuji;Takahashi, Satoko;Chuang, Chia-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.123-125
    • /
    • 2013
  • 2FGL J1823.8+4312 and 2FGL J1304.1-2415 are two unidentified Fermi objects which are associated with cluster of galaxies. In order to exam the possibility of cluster of galaxies as gamma-ray emitters, we search for counterpart of these two unidentified Fermi objects in other wavebands. However, we find other candidate to be more likely the counterpart of the unidentified Fermi object for both sources. We compare their light curves and SEDs in order to identify their source types. However, data at millimeter and sub-millimeter wavebands, which is important for us to constrain the SED at synchrotron peak, is lacking of measurement. Therefore, we proposed to SMA observation for these two sources. We have got data and are doing further analysis.

High-Performance Millimeter Wave Harmonic Output Oscillator using Sub-Harmonic Wave Injection-Synchronization (서브하모닉 주입동기에 의한 밀리미터파 대역 고조파 발진기의 고성능화)

  • Choi, Young-Kyu;Nam, Byeong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This paper deals with a millimeter wave source which is utilizing sub-harmonic injection-synchronization technique. A 8.7GHz oscillator with MES-FET is fabricated, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as oscillator in this system. Adopting this technique, we can obtain a high stable, high frequency millimeter wave source even though self-oscillating frequency of an oscillator is relatively low. In the experiments, the range of injection-synchronization is about 26MHz and is proportional to the input sub-harmonic power. From the spectrum analysis of the 2nd harmonic output. we blow that the phase noise of the harmonic oscillator is remarkably decreased.

High Gain and Broadband Millimeter-wave MHEMT Cascode Amplifier (고이득 및 광대역 특성의 밀리미터파 MHEMT Cascode 증폭기)

  • An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Lee, Mun-Kyo;Baek, Yong-Hyun;Chae, Yeon-Sik;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.105-111
    • /
    • 2004
  • In this paper, millimeter-wave high gain and broadband MHEMT cascode amplifiers were designed and fabricated. The 0.1 ${\mu}{\textrm}{m}$ InGaAs/InAlAs/GaAs Metamorphic HEMT was fabricated for cascode amplifiers. The DC characteristics of MHEMT are 640 mA/mm of drain current density, 653 mS/mm of maximum transconductance. The current gain cut-off frequency(f$_{T}$) is 173 GHz and the maximum oscillation frequency(f$_{max}$) is 271 GHz. By using the CPW transmission line, the cascode amplifier was designed the matched circuit for getting the broadband characteristics. The designed amplifier was fabricated by the MHEMT MIMIC process that was developed through this research. As the results of measurement, the 1 stage amplifier obtained 3 dB bandwidth of 37 GHz between 31.3 to 68.3 GHz. Also, this amplifier represents the S21 gain with the average 9.7 dB gain in bandwidth and the maximum gain of 11.3 dB at 40 GHz. The 2 stage amplifier has the broadband characteristics with 3 dB bandwidth of 29.5 GHz in the frequency range from 32.5 to 62.0 GHz. The 2 stage cascode amplifier represents the high gain characteristics with the average gain of 20.4 dB in bandwidth and the maximum gain of 22.3 dB at 36.5 GHz.z.z.

Precise Measurements of Waveguide Scattering Parameters in G-Band (G-Band 도파관 산란 계수 정밀 측정)

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Cho, Chihyun;Kim, Dae-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.892-899
    • /
    • 2013
  • This paper discusses difficulties in precise measurements of the scattering parameters in (sub-)millimeter-wave range and tips for more accurate measurements, and provides measurement examples in the G-band(140~220 GHz). First, one investigates the differences in operating principles of scattering parameters measurement systems used in microwave and (sub-)millimeter-wave ranges and describes tips for better operation of the (sub-)millimeter-wave scattering parameters measurement system. In addition, one describes tips for better transmission properties and connection repeatability of waveguides and a precise measurement method for devices with small reflection coefficients.