• 제목/요약/키워드: sub-health

검색결과 2,554건 처리시간 0.029초

인구 유동에 따른 서울시 대기 중 초미세먼지 농도 변화 요인 분석 및 노출평가 (Analysis and Exposure Assessment of Factors That Affect the Concentration of Ambient PM2.5 in Seoul Based on Population Movement)

  • 우재민;신지훈;민기홍;김동준;성경화;조만수;우병열;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.6-15
    • /
    • 2024
  • Background: People's activities have been restricted due to the COVID-19 pandemic. These changes in activity patterns may lead to a decrease in fine particulate matter (PM2.5) concentrations. Additionally, the level of population exposure to PM2.5 may be changed. Objectives: This study aimed to analyze the impact of population movement and meteorological factors on the distribution of PM2.5 concentrations before and after the outbreak of COVID-19. Methods: The study area was Guro-gu in Seoul. The research period was selected as January to March 2020, a period of significant population movement changes caused by COVID-19. The evaluation of the dynamic population was conducted by calculating the absolute difference in population numbers between consecutive hours and comparing them to determine the daily average. Ambient PM2.5 concentrations were estimated for each grid using ordinary kriging in Python. For the population exposure assessment, the population-weighted average concentration was calculated by determining the indoor to outdoor population for each grid and applying the indoor to outdoor ratio to the ambient PM2.5 concentration. To assess the factors influencing changes in the ambient PM2.5 concentration, a statistical analysis was conducted, incorporating population mobility and meteorological factors. Results: Through statistical analysis, the correlation between ambient PM2.5 concentration and population movement was positive on both weekends and weekdays (r=0.71, r=0.266). The results confirmed that most of the relationships were positive, suggesting that a decrease in human activity can lead to a decrease in PM2.5 concentrations. In addition, when population-weighted concentration averages were calculated and the exposure level of the population group was compared before and after the COVID-19 outbreak, the proportion of people exceeding the air quality standard decreased by approximately 15.5%. Conclusions: Human activities can impact ambient concentrations of PM2.5, potentially altering the levels of PM2.5 exposure in the population.

인구구조 변동 추세를 반영한 미세먼지 노출에 의한 조기 사망자 추정 (Estimation of Premature Deaths due to Exposure to Particulate Matter (PM2.5) Reflecting Population Structure Change in South Korea)

  • 박정현;장용철;이종현
    • 한국환경보건학회지
    • /
    • 제49권6호
    • /
    • pp.362-371
    • /
    • 2023
  • Background: PM2.5 pollution has been a persistent problem in South Korea, with concentrations consistently exceeding World Health Organization (WHO) guidelines. The aging of the population in the country further exacerbates the health impacts of PM2.5 since older adults are more susceptible to the adverse effects of air pollution. Objectives: This study aims to evaluate how the health impact (premature death) due to long-term exposure to PM2.5 in South Korea could change in the future according to the trend of change in the country's population structure. Methods: The study employs a relative risk function, which accounts for age-specific relative risks, to assess the changes in premature deaths by age and region at the average annual PM2.5 concentration for 2022 and at PM2.5 concentration improvement levels. Premature deaths were estimated using the Global Exposure Mortality Model (GEMM). Results: The findings indicate that the increase in premature deaths resulting from the projected population structure changes up to 2050 would significantly outweigh the health benefits (reduction in premature deaths) compared to 2012. This is primarily attributed to the rising number of premature deaths among the elderly due to population aging. Furthermore, the study suggests that the effectiveness of the current domestic PM2.5 standard would be halved by 2050 due to the increasing impact of population aging on PM2.5-related mortality. Conclusions: The study highlights the importance of considering trends in population structure when evaluating the health benefits of air pollution reduction measures. By comparing and evaluating the health benefits in reflection of changes in population structure to the predicted PM2.5 concentration improvements at the provincial level, a more comprehensive assessment of regional air quality management strategies can be achieved.

Interpretation of the Basic and Effective Reproduction Number

  • Lim, Jun-Sik;Cho, Sung-il;Ryu, Sukhyun;Pak, Son-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • 제53권6호
    • /
    • pp.405-408
    • /
    • 2020
  • In epidemiology, the basic reproduction number (R0) is a term that describes the expected number of infections generated by 1 case in a susceptible population. At the beginning of the coronavirus disease 2019 (COVID-19) pandemic, R0 was frequently referenced by the public health community and the wider public. However, this metric is often misused or misinterpreted. Moreover, the complexity of the process of estimating R0 has caused difficulties for a substantial number of researchers. In this article, in order to increase the accessibility of this concept, we address several misconceptions related to the threshold characteristics of R0 and the effective reproduction number (Rt). Moreover, the appropriate interpretation of the metrics is discussed. R0 should be considered as a population-averaged value that pools the contact structure according to a stochastic transmission process. Furthermore, it is necessary to understand the unavoidable time lag for Rt due to the incubation period of the disease.

Estimate of the Basic Reproduction Number for COVID-19: A Systematic Review and Meta-analysis

  • Alimohamadi, Yousef;Taghdir, Maryam;Sepandi, Mojtaba
    • Journal of Preventive Medicine and Public Health
    • /
    • 제53권3호
    • /
    • pp.151-157
    • /
    • 2020
  • Objectives: The outbreak of coronavirus disease 2019 (COVID-19) is one of the main public health challenges currently facing the world. Because of its high transmissibility, COVID-19 has already caused extensive morbidity and mortality in many countries throughout the world. An accurate estimation of the basic reproduction number (R0) of COVID-19 would be beneficial for prevention programs. In light of discrepancies in original research on this issue, this systematic review and meta-analysis aimed to estimate the pooled R0 for COVID-19 in the current outbreak. Methods: International databases (including Google Scholar, Science Direct, PubMed, and Scopus) were searched to identify studies conducted regarding the R0 of COVID-19. Articles were searched using the following keywords: "COVID-19" and "basic reproduction number" or "R0." The heterogeneity among studies was assessed using the I2 index, the Cochran Q test, and T2. A random-effects model was used to estimate R0 in this study. Results: The mean reported R0 in the identified articles was 3.38±1.40, with a range of 1.90 to 6.49. According to the results of the random-effects model, the pooled R0 for COVID-19 was estimated as 3.32 (95% confidence interval, 2.81 to 3.82). According to the results of the meta-regression analysis, the type of model used to estimate R0 did not have a significant effect on heterogeneity among studies (p=0.81). Conclusions: Considering the estimated R0 for COVID-19, reducing the number of contacts within the population is a necessary step to control the epidemic. The estimated overall R0 was higher than the World Health Organization estimate.

여름과 가을의 주택실내 초미세먼지(PM2.5) 농도 측정 및 영향요인 비교 (Measurement of PM2.5 Concentrations and Comparison of Affecting Factors in Residential Houses in Summer and Autumn)

  • 김동준;민기홍;신지훈;최영태;최길용;심상효;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.16-24
    • /
    • 2024
  • Background: Indoor PM2.5 concentrations in residential houses can be affected by various factors depending on the season. This is because not only do the climate characteristics depend on the season, but the activity patterns of occupants are also different. Objectives: The purpose of this study is to compare factors affecting indoor PM2.5 concentrations in apartments and detached houses in Daegu according to seasonal changes. Methods: This study included 20 households in Daegu, South Korea. The study was conducted during the summer (from July 10 to August 10, 2023) and the autumn (from September 11 to October 9, 2023). A sensor-based instrument for PM2.5 levels was installed in the living room of each residence, and measurements were taken continuously for 24 hours at intervals of one minute during the measurement period. Based on the air quality monitoring system data in Daegu, outdoor PM2.5 concentrations were estimated using ordinary kriging (OK) in Python. In addition, the indoor activities of the occupants were investigated using a time-activity pattern diary. The affecting factors of indoor PM2.5 concentration were analyzed using multiple regression analysis. Results: Indoor and outdoor PM2.5 concentrations of the residences during summer were 15.27±11.09 ㎍/m3 and 11.52±7.56 ㎍/m3, respectively. Indoor and outdoor PM2.5 concentrations during autumn were 13.82±9.61 ㎍/m3 and 9.57±5.50 ㎍/m3, respectively. The PM2.5 concentrations were higher in summer compared to autumn both indoors and outdoors. The primary factor affecting indoor PM2.5 concentration in summer was occupant activity. On the other hand, during the autumn season, the primary affecting factor was outdoor PM2.5 concentration. Conclusions: Indoor PM2.5 concentration in residential houses is affected by occupant activity such as the inflow of outdoor PM2.5 concentration, cooking, and cleaning, as found in previous studies. However, it was revealed that there were differences depending on the season.

Effects of bone-specific physical activity on body composition, bone mineral density, and health-related physical fitness in middle-aged women

  • Kim, Sung-Woo;Jung, Sung-Woo;Seo, Myong-Won;Park, Hun-Young;Song, Jong-Kook
    • 운동영양학회지
    • /
    • 제23권4호
    • /
    • pp.36-42
    • /
    • 2019
  • [Purpose] The study aimed to determine the effects of bone-specific physical activity on body composition, bone mineral density (BMD), and health-related physical fitness in middle-aged women. [Methods] One hundred eighty-six middle-aged women aged 31-49 years participated in this study. The subjects were divided into tertile groups according to the level of physical activity (low-score group, n=62; middle-score group, n=62; high-score group, n=62). Bone-specific physical activity participation was assessed using the bone-specific physical activity questionnaire. Body composition and BMD were measured using dual-energy X-ray absorptiometry. Health-related physical fitness test included isometric muscle strength (grip strength), muscular endurance (sit-ups), flexibility (sit and reach), and cardiorespiratory fitness (maximal oxygen uptake [VO2max]). [Results] The high-score group had a significantly higher fat-free mass (p=.045, partial eta-squared value[ηp2]=.033) than the middle- and low-score groups, whereas the high-score group had significantly lower percent body fat (p=.005, ηp2=.056) than the other two groups. Whole-body BMD (p=.034, ηp2=.036) and lumbar BMD (p=.003, ηp2=.060) were significantly higher in the high-score group than in the low-score group. The high-score group performed significantly better for grip strength (p=.0001, ηp2=.101), sit-ups (p=.0001, ηp2=.108), and VO2max (p=.0001, ηp2=.092) than the other two groups. [Conclusion] The present study suggests that bone-specific physical activity could be useful in improving body composition, BMD, and health-related physical fitness in middle-aged women, significantly enhancing their BMD and health conditions.

식수대용차 재료의 비의도적 유해물질 오염도 조사연구 (Investigation of Unintentionally Hazardous Substance in Teas)

  • 박혜민;김애경;양용식;최수연;서두리;조배식;서계원;김진희
    • 한국식품위생안전성학회지
    • /
    • 제35권2호
    • /
    • pp.162-169
    • /
    • 2020
  • 2018년 10월부터 2019년 10월까지 광주지역의 대형마트(50건), 재래시장(25건) 및 온라인(50건)에서 구입한 보리차, 옥수수차, 결명자차, 둥글레차, 옥수수수염차 등 침출차 총 125건을 대상으로 중금속, 벤조피렌, 곰팡이독소 함량 조사를 통해 오염실태를 평가하였다. 중금속 중 As, Cd, Pb 함량을 검사하였으며, benzopyrene은 발암물질로 분류된 benzo(a)pyrene의 함량을 조사하였다. 그리고 곰팡이독소는 aflatoxin (AFB1, AFB2, AFG1, AFG2), ochratoxin A (OTA), fumonisin (FUB1, FUB2), zearalenone (ZON)의 함량을 검사하였다. 「식품공전」에 제시된 침출차의 규격과 비교해 보았을 때 중금속 함량은 기준이 설정된 범위(Pb 5.0 mg/kg 이하) 내에서 검출되어 모두 적합하였고, benzo(a)pyrene은 125건 중 16건의 시료에서 12.8%의 검출률을 나타내었으며, 곰팡이독소는 125건 중 29건의 시료에서 23.2%의 검출률을 나타내었다. 하지만 현재 우리나라 「식품공전」에서는 침출차의 벤조피렌, 곰팡이독소 기준규격이 정해져있지 않아 이에 대한 안전성 여부는 확인하기 어려웠다.

질량분석기를 이용한 약령시장 내 유통 식물성 식품원료의 곰팡이독소 분석 및 위해성 평가 (Analysis of Multi-class Mycotoxins and Risk Assessment in Edible and Medicinal Plants by LC-MS/MS)

  • 최은정;고숙경;조성애;박영애;정삼주;홍성초;조석주;정지헌;박주성
    • 생약학회지
    • /
    • 제53권3호
    • /
    • pp.162-169
    • /
    • 2022
  • This study investigated the mycotoxins (aflatoxin B1, B2, G1, G2, fumonisin B1, B2, ochratoxin A and zearalenone) contained in edible and medicinal plants in Seoul Yangnyeong market during 2020-2021. We analyzed contamination of mycotoxins using LC-MS/MS and evaluated risk assessment. The method was validated by assessing matrix effects, linearity, limit of detection (LOD), limit of quantification(LOQ) and recovery. Matrix-matched standard calibration was used for calibration curves showed good linearity (r2>0.999). The LOD, LOQ and recovery were 0.01-0.23 ㎍/kg, 0.04-0.71 ㎍/kg and 75.5-117.9% respectively. Mycotoxins were detected in 22 of 171 samples; aflatoxin B1 (6.66 ㎍/kg), fumonisin (7.54-64.68 ㎍/kg), ochratoxin A (4.21-10.56 ㎍/kg) and zearalenone (7.31-60.76 ㎍/kg). In the risk assessment, the MOE (Margine of Exposure) of aflatoxin B1 and ochratoxin A were in the range of 1.48×103-2.36×105. No items exceeded 100% in %TDI (Tolerable Daily Intake) of fumonisin (B1+B2) and zearalenone.

서울시 소재 대학교 차량 요금정산소 수납원의 블랙카본 노출 평가 (Exposure Assessment of Black Carbon among Tollbooth Worker at a University)

  • 김동원;조혜리;우철운;류승훈;윤충식
    • 한국산업보건학회지
    • /
    • 제29권4호
    • /
    • pp.464-476
    • /
    • 2019
  • Objectives: This study aimed to assess the exposure levels of tollbooth workers to diesel particulate matter using black carbon (BC) and to find the correlations among variables associated with BC using the motor vehicle management act regulated by the Ministry of Land, Infrastructure and Transport. Methods: This study was performed over 14 days at a university in Seoul. BC levels were monitored using an aethalometer and were conducted around the breathing zones of the workers. There were three sampling locations: inside the tollbooth (front gate and rear gate) and an office as a control group. T-test, correlation, and multiple linear regression analysis were performed using SPSS. Results: The geometric mean (GM) of BC30min concentrations in the exposure group was 2.44 ㎍/㎥, approximately 1.4 times higher than the control group (1.75 ㎍/㎥). The GM of BC30min concentrations was 2.75 ㎍/㎥ during the heavy traffic time (9-10 am) and 2.30 ㎍/㎥ during non-heavy traffic times (p<0.001). The multiple linear regression analysis shows that the number of all types of vehicles and PM2.5 concentrations in the atmosphere were factors increasing the GM of BC(ln(BC30min)) concentrations (adjusted R2=0.42, p<0.001). The workers were constantly exposed to low concentrations (GM of BC30min=2.44 ㎍/㎥), but they were exposed to peak concentrations instantly (BC10sec=3545.04 ㎍/㎥). When the GM of BC30min concentrations was momentarily represented as high, it was identified that a vehicle mainly using diesel fuel or an aging vehicle had passed. Conclusions: A ventilation system should be installed in the closed tollbooth or aging vehicles should be controlled so as not to pass tollbooths.