• Title/Summary/Keyword: sub-cooled nitrogen

Search Result 42, Processing Time 0.019 seconds

Design of 1 MVA Single Phase HTS Transformer with Pancake Windings Cooled by Natural Convection of Sub-cooled Liquid Nitrogen

  • Kim, Woo-Seok;Kim, Sung-Hoon;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Lee, Don-Kun;Park, Yeon-Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.34-37
    • /
    • 2003
  • A 1 MVA single-phase high temperature superconducting (HTS) transformer with BSCCO-2223 wire was designed in this paper. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV respectively. Double pancake HTS windings arranged reciprocally will be used for the transformer windings, because of the advantages of insulation and distribution of surge voltage in case of a large power and high voltage transformer. Single HTS wire was used for the primary windings and four parallel wires were used for the secondary windings of the transformer with transposition. A core of the transformer was designed as a shell type core separated with the windings by a cryostat made of GFRP with a room temperature bore. The operating temperature of the HTS windings will be about 65K with sub-cooled liquid nitrogen. A cryogenic cooling system using a GM-cryocooler for this HTS transformer by natural convection of liquid nitrogen was designed. This type of cooling system can be a good option for compactness, efficiency, and reliability of the HTS transformer.

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Analysis on the Dielectric Characteristics of $SF_6$ Gas for Developing a High Voltage Superconducting Coil (고전압 초전도코일 개발을 위한 이용률에 따른 $SF_6$가스의 절연특성에 관한 연구)

  • Nam, Seok-Ho;Hong, Jong-Gi;Heo, Jeong-Il;Kang, Hyoung-Ku
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.189-194
    • /
    • 2012
  • Studies on the development of high voltage superconducting apparatuses, such as transmission superconducting fault current limiters (SFCLs) and superconducting cables, have been performed worldwide. In this paper, a study on the electrical insulation characteristics of electro negative gas according to various pressures and utilization factors was conducted as a part of developing a high voltage superconducting coil with a sub-cooled nitrogen cooling system. Some gases such as helium (He), nitrogen ($N_2$), and sulfur hexafluoride ($SF_6$) are considered for pressurizing the sub-cooled nitrogen cooling system of high voltage SFCLs and superconducting cables. $SF_6$ is used to pressurize and enhance the dielectric performance of a superconducting system of a sub-cooled nitrogen cooling system for superconducting cables being developed in the Republic of Korea. In this paper, dielectric experiments on AC voltage, as well as lightning impulse voltage of $SF_6$, are conducted according to various utilization factors by using several kinds of sphere-to-plane electrode systems. As results, it is known that the empirical formulae of $SF_6$, known as an electro negative gas, are derived according to various pressures and utilization factors. Also, the appropriate pressure condition for designing a high voltage superconducting coil is found from the viewpoint of dielectric performance.

A study on the barrier effect with respect to the condition of solid insulation materials in GN2

  • Lee, Hongseok;Mo, Young Kyu;Lee, Onyou;Kim, Junil;Bang, Seungmin;Kang, Jong O;Nam, Seokho;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.44-47
    • /
    • 2015
  • High voltage superconducting apparatuses have been developed presently around the world under AC and DC sources. In order to improve electrical reliability of superconducting apparatuses with AC and DC networks, a study on the DC as well as the AC electrical breakdown characteristics of cryogenic insulations should be conducted for developing a high voltage superconducting apparatus. Recently, a sub-cooled liquid nitrogen cooling system is known to be promising method for developing a high voltage superconducting apparatus. A sub-cooled liquid nitrogen cooling system uses gaseous nitrogen to control the pressure and enhance the dielectric characteristics. However, the dielectric characteristics of gaseous nitrogen are not enough to satisfy the grade of insulation for a high voltage superconducting apparatus. In this case, the application of solid insulating barriers is regarded as an effective method to reinforce the dielectric characteristics of a high voltage superconducting apparatus. In this paper, it is dealt with a barrier effect on the DC and AC dielectric characteristics of gaseous nitrogen with respect to the position and number of solid insulating barriers. As results, the DC and AC electrical breakdown characteristics by various barrier effects is verified.

Fabrication and Characteristic Test of the DC Reactor for 6.6kV /200A Inductive Superconducting Fault Current Limiter (6.6kV/200A급 유도형 초전도한류기용 DC 리액터의 제작 및 특성 실험)

  • 안민철;이승제;강형구;배덕권;김현석;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.36-40
    • /
    • 2003
  • Inductive superconducting fault current limiter(SFCL) with DC reator rated on 6.6k $V_{rms}$/200 $A_{rms}$ has been developed in Yonsei University. The development of the DC reactor is the key technology in this type SFCL. This paper deals with the fabrication and characteristic test of the DC reactor. For the development of this magnet, the winding machine for high-Tc superconducting solenoid was manufactured. Using this machine, a large-scale HTS solenoid using Bi-2223 tape was fabricated successfully. This coil has 5 layers which are connected in series each other. The inductance of the DC reactor coil is 84mB. The cooling system was the sub-cooled nitrogen whose temperature is about 65K. The characteristic test of the coil was performed. The full quench current of this coil is about 490A.90A.

A Study on Design, Fabrication Techniques and Test Results of 1.2kV 180A Inductive Superconducting Fault Current Limiter by Conduction-Cooled System (전도냉각에 의한 1.2 KV/80 A급 유도형 고온초전도 한류기의 설계, 제작 및 테스트에 관한 연구)

  • 강형구;전우용;이승제;안민철;배덕권;윤용수;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • The inductive superconducting fault current limiter (SFCLJ limits the fault current with its dc reactor. To fabricate the optimal dc reactor for inductive SFCL, several design and manufacturing technologies are necessary. In this paper, the manufacturing technology for dc reactor and cryogenic cooling method are described in detail. GM-cryocooler was used enlarge the critical current of dc reactor by cooling down the temperature of dc reactor about 20 K. Moreover, the results of short circuit test were described. Finally, the thermal characteristics of conduction-cooled system were discussed and then, sub-cooled nitrogen system was proposed to enhance the thermal stability of dc reactor.

Cooling Condition of HTS Power Cable (고온초전도 전력케이블의 냉각조건)

  • 김동락;김승현;양형석;조승연;이제묘
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.35-36
    • /
    • 2002
  • High temperature super conducting(HTS) cable system for power transmission are under development that will be cooled by sub-cooled liquid nitrogen to provide cooling of the cable and termination. The target of the development during the first 3-years stage is 22.9kV/50MVA class and 30m length cold dielectric type 3-phase power cable. The essential features of the HTS cable cryogenic system and performance conditions for the design of power cable will be discussed.

  • PDF

Effects of artificial holes on the cooling efficiency of single grain Y1.5Ba2Cu3O7-y bulk superconductors (단결정 Y1.5Ba2Cu3O7-y 벌크 초전도체의 냉각효율에 대한 인공 구멍의 효과)

  • Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk;Ko, Tae-Kuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.1-4
    • /
    • 2012
  • Effects of artificial holes on the cooling efficiency of single grain YBCO bulk superconductors were studied. Single grain YBCO bulk superconductors without artificial holes, with six 2.4 mm holes and six holes filled with Bi-Pb-Cd-Sn metal solder were fabricated by a top-seeded melt growth process for powder compacts with/without holes. Simulation for the cooling rate to a liquid nitrogen temperature (77 K) of YBCO samples was carried out using a finite element method (FEM) and the results are compared with the actual cooling rates of samples in liquid nitrogen. The simulated cooling times for the YBCO sample without holes, with six holes and with six holes filled with the metal solder were 80, 47 and 75 sec. respectively, which are similar to the actual cooling times of 84, 52 and 78 sec. estimated for the same samples cooled in liquid nitrogen. The shorter cooling time of the sample with artificial holes are attributed to the increased surface areas associated with the presence of artificial holes. The metal filling into the holes did not give any remarkable effect on the cooling efficiency.

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.