• 제목/요약/키워드: sub-compounds

검색결과 998건 처리시간 0.033초

방전 플라즈마 소결법을 이용한 CoSb3계 열전재료의 전극 접합 및 특성 (Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method)

  • 김경훈;박주석;안종필
    • 한국결정성장학회지
    • /
    • 제20권1호
    • /
    • pp.30-34
    • /
    • 2010
  • 중고온용 열전 소재로 우수한 특성을 나타내는 $CoSb_3$계 소재의 열전 소자 제조를 위해 방전플라즈마 소결법을 이용하여 소결 및 Cu-Mo 전극 소재와의 접합을 동시에 실시하였다. $CoSb_3$ 내부로의 Cu 확산을 방지하기 위해 Ti을 중간층으로 삽입하였으며 열팽창계수의 조절을 위해 Cu : Mo = 3 : 7 부피비 조성을 선택하였다. 삽입된 Ti과 $CoSb_3$$TiSb_2$ 이 차상을 형성하면서 접합이 진행되었지만 접합 온도 및 접합 시간의 증가에 따라 TiSb 및 TiCoSb 등의 상의 형성에 의해 접합 계면에서 균열이 발생되어 접합 특성을 악화시키는 것으로 밝혀졌다.

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.

방전플라즈마 소결 공정을 이용한 CoSb3/Al/Ti/CuMo 접합 특성 (Joining Properties of CoSb3/Al/Ti/CuMo by Spark Plasma Sintering Process)

  • 김민숙;안종필;김경훈;김경자;박주석;서원선;김형순
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.549-553
    • /
    • 2014
  • $CoSb_3$-based skutterudite compounds are candidate materials for thermoelectric power generation in the mid-temperature range (600 - 900 K) because their thermoelectric properties can be enhanced by doping and filling. The joining property of thermoelectric module electrodes containing thermoelectric materials is of great importance because it can dominate the efficiency of the thermoelectric module. This study examined the properties of $CoSb_3$/Al/Ti/CuMo joined by the spark plasma sintering technique. Titanium thin foil was used to prevent the diffusion of copper into $CoSb_3$ and Aluminum thin foil was used to improve the adhesion between $CoSb_3$ and Ti. The insertion of an Aluminum interlayer between the Ti and $CoSb_3$ was effective for joining $CoSb_3$ to Ti by forming an intermediate layer at the Al-$CoSb_3$ boundary without any micro cracks. Specifically, the adhesion strength of the Ti/Al/$CoSb_3$ joining interface showed a remarkable improvement compared with our previous results, without deterioration of electrical property in the interface.

Coenzyme Q10 유도체들의 항산화 및 세포독성 효과 (Antioxidant and Cytotoxic Effects of Coenzyme Q10 Derivatives)

  • 최원식;남석우;안은경;어진용;임상호
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1787-1794
    • /
    • 2008
  • Coenzyme $Q_{10}$과 그 유도체 coenzyme $Q_n$ 6종을 합성하고, 이들 유도체에 대하여 상피세포(LLC-PK1 cell)를 이용한 항산화 효과와 NIH/3T3 세포를 이용한 세포독성 실험을 실시하였다. 그 결과, 합성한 coenzyme $Q_n$ 유도체들이 coenzyme $Q_{10}$에 비해 우수한 항산화 효과를 나타내었으며, 그 중 coenzyme $Q_3$-C가 모든 농도에서 $107.7{\sim}135.9%$로 가장 우수한 효과를 나타내었다. 또한, 모든 coenzyme $Q_n$ 유도체들이 Coenzyme $Q_{10}$과 유사한 세포독성을 나타내었다. Coenzyme $Q_n$의 n수에 따른 항산화 효과 및 세포독성 실험에서 isoprene unit의 수가 적은 유도체들에서 우수한 효과를 나타내었다.

Investigation of the suitability of new developed epoxy based-phantom for child's tissue equivalency in paediatric radiology

  • Yucel, Haluk;Safi, Aziz
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4158-4165
    • /
    • 2021
  • In this study, tissue equivalency (TE) of a newly developed epoxy-based phantom to 3-5 years child's tissue was investigated in paediatric energy range. Epoxy-based TE-phantoms were produced at different glandular/adipose (G/A) ratios of 17/83%, 31/69%, 36/64% and 10/90%. A procedure was developed in which specific amounts of boron, calcium, magnesium, sulphur compounds are mixed with epoxy resin, together with other minor substitutes. In paediatric energy range of 40-60 kVp half-value layer (HVL) values were measured and then Hounsfield Units (HU) were determined from Computed Tomography(CT) scans taken in the X-ray energy range of 80-120kVp. It is found that radiation absorption properties of these phantoms in terms of the measured HVL values related to linear attenuation coefficients (µ) are very well mimicking a 3 years child's soft tissue in case a ratio of 10/90%G/A. Additionally, the HU values of phantoms were determined from the CT scans. The HU = 47.8 ± 4.8 value was found for the epoxy-based phantom produced at a ratio of 10/90%G/A. The obtained HVL and HU values also support the suitability of the new epoxy based-phantom produced at a ratio of 10/90%G/A for a satisfactory mimicking a 3 years child's soft tissue by 5%. Thus they can have a potential use to perform the quality controls of medical X-ray systems and dose optimization studies.

자동차 배출가스 중 BTEX의 비율과 C2-benzenes의 상관성 연구 (A Study on the BTEX Ratio and Correlation of C2-benzenes in Vehicle Exhaust)

  • 문선희;정택호;정성운;김선문;서석준;이승환;김정화;홍유덕;홍희경
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.185-191
    • /
    • 2018
  • Benzene, toluene, ethylbenzene and xylene (BTEX) were well known as ozone precursors from photochemical reactions and contribute to the formation of photochemical smog which pose health hazards. Also, some of these compounds directly affect the human health due to their toxicity such as benzene. In this study, BTEX ratios and correlation of $C_2$-benzenes (xylenes, ethylbenzene) in vehicle exhaust from recreational vehicle (RV) and multi-purpose vehicle (MPV) were characterized using a chassis dynamometer. VOCs were collected by tedlar bag and a GC/MS system was used for their quantification. Among all of the BTEX, toluene has the highest concentration(more than 30% in composition of BTEX). The average ratio of toluene to benzene emissions (T/B ratio=2.2) was found in vehicle exhaust. The average m,p-xylene/ethylbenzene and m,p-xylene/o-xylene ratios were 1.0 and 3.0 respectively. As a result, it showed a good correlation between the $C_2$-benzenes ($R^2=0.98{\sim}0.99$). In the future, it can be used as a marker for effect evaluation to atmospheric environment by vehicle exhaust.

(Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과 (Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca)

  • 황유진;김관영;김규식;김세광;윤영옥;이기안
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.

용융Al-Si도금 강재에 형성한 Cr 막의 고온 환경 중 내식특성 (Corrosion resistance at high temperature condition of Cr Films Formed on hot-dip Al-Si plated steel sheet)

  • 강민주;이승효;이명훈
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.448-459
    • /
    • 2022
  • Generally, steel is the most commonly used in the industry because of good strength, processability and cost-effectiveness. Steel can be surface-treated such as coating or used as an alloy by adding elements such as Cr, Ni, Zr, and Al to increase corrosion resistance. However, even if steel is used in same environment corrosion resistance is sharply lowered when it is exposed to a high temperature for a fixed or extended period of time due to an overload or other factors. In particular, the use of hot-dip aluminized plated steel, which is used in high-temperature atmospheres, is increasing due to the surface Al2O3 oxide film. This steel necessitates an urgent solution as issues of corrosion resistance limitations often appear. It is an important issue that not only cause analysis but also the research for the surface treatment method that can be solved. Thus, in this study, Cr in which it is expected to be effective in corrosion resistance and heat resistance attempted to deposit on hot dip aluminized plated steel with PVD sputtering. And it was possible to present the surface treatment application of various types of industrial equipment exposed to high temperature and basic design guidelines for use by confirming the corrosion resistance of hot dip Al-Si plated steel with Cr film deposited at high temperature.

고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결 (Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating)

  • 강현수;도정만;윤진국;박방주;손인진
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.891-896
    • /
    • 2012
  • Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.

CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성 (Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds)

  • 서진성;윤상효;나병기
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.35-41
    • /
    • 2021
  • 차세대 리튬이차전지용 음극활물질로 각광을 받고 있는 실리콘은 높은 이론용량을 가지고 있어 상용화를 하기 위해 많은 연구가 진행되었다. 하지만 실리콘은 충방전시 부피팽창이 심하고, 전기전도도가 낮은 단점을 가지고 있다. 이러한 문제를 해결하기 위해서 실리콘 표면에 SiO2를 형성시키고, 탄소를 코팅함으로써 실리콘의 부반응을 억제시키고 전기전도도를 향상시켰다. 추가적으로 CNF와 CNT를 복합적으로 첨가하여 부피팽창에 대한 완충효과를 부여하고 전기전도도를 향상시켰다. 제조된 샘플은 XRD, SEM, EDS로 물리적 특성 분석을 실시하였으며, 전기화학적 특성은 전기전도도, EIS, CV 그리고 사이클 테스트를 통해 분석하였다. (Si/SiO2/C)+CNT&CNF 복합체의 경우 다른 샘플들에 비하여 높은 전기전도도 및 낮은 전하전달저항을 보여주었으며, 사이클테스트 결과 첫 번째 사이클에서 1528 mAh/g 그리고 50번째 사이클에서 1055 mAh/g의 용량을 가졌으며 83%의 용량 유지율을 보여주었다.