• 제목/요약/키워드: sub-compounds

검색결과 998건 처리시간 0.026초

Metal-Free Oxidation of Alcohols to Their Corresponding Carbonyl Compounds Using NH4NO3/Silica Sulfuric Acid

  • Zarei, Amin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2149-2155
    • /
    • 2012
  • A metal-free and efficient procedure for the oxidation of alcohols into the corresponding carbonyl compounds has been described using ammonium nitrate in the presence of silica sulfuric acid under mild and heterogeneous conditions. The use of non-toxic and inexpensive materials, simple and clean work-up, short reaction times and good yields of the products are among the advantages of this method.

Weissella cibaria CMU suppresses mgl gene expression and enzyme activity associated with bad breath

  • Kim, Hyun-Jin;Yeu, Ji-Eun;Lee, Dong-Suk;Kang, Mi-Sun
    • International Journal of Oral Biology
    • /
    • 제44권4호
    • /
    • pp.152-159
    • /
    • 2019
  • The oral care probiotic strain Weissella cibaria CMU (oraCMU) inhibits volatile sulphur compounds associated with halitosis, presumably by inhibiting the growth of associated oral pathogens. In the present study, we investigated whether oraCMU inhibits the production of these compounds by suppressing the expression of mgl. This gene encodes L-methionine-α-deamino-γ-mercaptomethane-lyase (METase) and is involved in the production of methyl mercaptan (CH3SH) by Porphyromonas gingivalis. Therefore, we specifically investigated the effects of oraCMU on the growth, CH3SH production, METase activity, and mgl expression of P. gingivalis. The minimum inhibitory concentrations of cell-free supernatant and secreted proteins from oraCMU were 125 mg/mL and 800 ㎍/mL, respectively. At sub-minimum inhibitory concentration levels, these metabolites inhibited CH3SH production, but they also reduced P. gingivalis viability. Only heat-killed oraCMU decreased CH3SH production without affecting P. gingivalis viability. Heat-killed oraCMU also inhibited METase activity toward L-methionine and mgl mRNA expression (p < 0.05). In summary, we demonstrated the inhibition of volatile sulphur compounds via the antimicrobial action of oraCMU and, for the first time, the inhibition of such compounds by heat-killed oraCMU, which occurred at the molecular level.

코스모스(Cosmos bipinnatus) 꽃으로부터 phenolic 화합물의 분리 동정과 항아토피 효과 (Phenolic compounds from the flowers of Cosmos bipinnatus and their anti-atopic activity)

  • 전형주;김형근
    • Journal of Applied Biological Chemistry
    • /
    • 제65권3호
    • /
    • pp.215-219
    • /
    • 2022
  • 코스모스 꽃을 MeOH : H2O = 4 : 1 용매로 추출하여, 얻어진 추출물을 EtOAc n-BuOH 및 water로 용매 분획 하였다. 이 중 n-BuOH 분획으로부터 silica gel (SiO2)과 octadecyl silica gel(ODS) column chromatography로 정제하여 2종의 화합물을 분리하였다. NMR, MS 및 IR 등의 스텍트럼 데이터를 통해 화합물의 화학구조를 benzyl O-β-ᴅ-glucopyranoside (1)와 and 2-phenylethyl O-β-ᴅ-glucopyranoside (2)로 동정하였다. 분리한 두 화합물의 자외선(UVB)으로 광노화가 유도된 HaCaT 세포주를 이용한 항아토피 효능을 평가하기 위해 실험을 진행하였으며, 1-1,000 ㎍/mL의 농도범위에서 2종의 화합물에서 모두 독성을 나타내지 않았다. TARC생성억제활성을 통한 항아토피 활성결과에서는 2종의 화합물에서 모두 농도의존적인 TARC 억제활성이 나타났지만, 특히 화합물 1에서 낮은 농도범위인 10 ㎍/mL에서도 유의적인 활성이 나타났으며, 다른 농도범위에서도 타 화합물에 비해 억제활성이 높은 것으로 나타나, 항아토피 활성이 가장 우수한 것으로 확인되었다. 이 결과를 통해 기능성 화장품 원료로 활용이 가능할 것으로 사료된다.

Synthesis and Structure Analysis of α and β Forms of [12] Metallacrown-6 Nickel(II) Complex: [Ni6(SCH2CH2CH3)12]

  • Xiao, Hai Lian;Jian, Fang Fang;Zhang, Ke Jie
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.846-848
    • /
    • 2009
  • Two modifications of the ${\alpha}\;and\;{\beta}$ forms of propyl mercaptan nickel(II) cluster, [$Ni_6(SCH_2CH_2CH_3)_{12}$], have been synthesized and their crystal structures have been determined by single-crystal X-ray diffraction. The alkyl groups are away from $Ni_6$ ring in $\alpha$ form whereas they are near to the Ni atom in $\beta$ form. The distance of Ni-H in $\beta$ form [2.576(5) $\AA$] is much shorter than that in $\alpha$ form [3.101(2) $\AA$]. In the crystal lattice of $\beta$ form, the whole structure forms a flower shape.

Study on Reaction Behavior of Mg-FeB Phase for Rare Earth Elements Recovery from End-of-life Magnet

  • Sangmin Park;Dae-Kyeom Kim;Rongyu Liu;Jaeyun Jeong;Taek-Soo Kim;Myungsuk Song
    • 한국분말재료학회지
    • /
    • 제30권2호
    • /
    • pp.101-106
    • /
    • 2023
  • Liquid metal extraction (LME), a pyrometallurgical recycling method, is popular owing to its negligible environmental impact. LME mainly targets rare-earth permanent magnets having several rare-earth elements. Mg is used as a solvent metal for LME because of its selective and eminent reactivity with rare-earth elements in magnets. Several studies concerning the formation of Dy-Fe intermetallic compounds and their effects on LME using Mg exist. However, methods for reducing these compounds are unavailable. Fe reacts more strongly with B than with Dy; B addition can be a reducing method for Dy-Fe intermetallic compounds owing to the formation of Fe2B, which takes Fe from Dy-Fe intermetallic compounds. The FeB alloy is an adequate additive for the decomposition of Fe2B. To accomplish the former process, Mg must convey B to a permanent magnet during the decomposition of the FeB alloy. Here, the effect of Mg on the transfer of B from FeB to permanent magnet is observed through microstructural and phase analyses. Through microstructural and phase analysis, it is confirmed that FeB is converted to Fe2B upon B transfer, owing to Mg. Finally, the transfer effect of Mg is confirmed, and the possibility of reducing Dy-Fe intermetallic compounds during LME is suggested.

산층층이꽃 추출물로부터 성분 분리 및 암세포성장 및 NO 생성 억제활성 (Isolation of the Constituents from Clinopodium chinense var. shibetchense and Inhibition Activity on Cancer Cell Growth and Nitric Oxide Production)

  • 김동화;이상국;박경식;박희준
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.93-99
    • /
    • 2020
  • This study was performed to find anti-inflammatory or antitumor compounds from the polar fraction obtained from the extract of Clinopodium chinense var. shibetchense (H. Lev) Koidz (Labiatae). Chromatography of the BuOH fraction yielded two flavonoid glycosides (compounds 1 and 2) and two saponins (compounds 3 and 4). On the basis of spectroscopic data, compounds 1 and 2 were identified to be ponciretin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (neoponcirin) and naringenin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (isonaringin). Compounds 3 and 4 were identified to be 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-saikogenin F (buddlejasaponin IV) and 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-21β-hydroxysaikogenin F (clinoposaponin XV). In addition, ursolic acid (5) was isolated and identified from the CHCl3 fraction. Inducible nitric oxide synthase (iNOS) assay and sulforhodamine B (SRB) assay were performed to lead a potential anti-inflammatory or anti-tumor compounds from C. chinense var. shibetchense. Of the four compounds (1 - 4), compound 3 considerably inhibited cancer cell growth and NO production (IC50s, 5.59 μM in iNOS assay and 6.62 - 14.88 μM in SRB assay).

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh;Ha, Manh Tuan;Hoang, Le Minh;Vu, Ngoc Khanh;Kim, Jeong Ah;Min, Byung Sun
    • Natural Product Sciences
    • /
    • 제28권3호
    • /
    • pp.143-152
    • /
    • 2022
  • In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.

Potential Functional Role of Phenethylamine Derivatives in Inhibiting Dopamine Reuptake: Structure-Activity Relationship

  • Dooti Kundu;Anlin Zhu;Eunae Kim;Suresh Paudel;Choon-Gon Jang;Yong Sup Lee;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.108-115
    • /
    • 2023
  • Numerous psychotropic and addictive substances possess structural features similar to those of β-phenethylamine (β-PEA). In this study, we selected 29 β-PEA derivatives and determined their structure-activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2-yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DA-induced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.

Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions

  • Kouhkan, Mehri;Zeynizadeh, Behzad
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2961-2966
    • /
    • 2010
  • Reduction of carbonyl compounds such as aldehydes, ketones, $\alpha,\beta$-unsaturated enals and enones, $\alpha$-diketones and acyloins was carried out readily with $NaBH_3CN$ in the presence of wet $SiO_2$ as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - $80^{\circ}C$) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation.

A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

  • Zeynizadeh, Behzad;Yahyaei, Saiedeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1664-1670
    • /
    • 2003
  • $NaBH_4$ with catalytic amounts of $MoCl_5$ can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, ${\alpha}$-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in $CH_3CN$ at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system.