• 제목/요약/키워드: sub-classes

검색결과 415건 처리시간 0.028초

A REMARK ON THE NUMBER OF FROBENIUS CLASSES GENERATING THE GALOIS GROUP OF THE MAXIMAL UNRAMIFIED EXTENSION

  • Jin, Seokho;Kim, Kwang-Seob
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.213-218
    • /
    • 2020
  • Assume that K is a number field and Kur is the maximal unramified extension of it. When Gal(Kur/K) is an infinite group. It is known that Gal(Kur/K) is generated by finitely many Frobenius classes of Gal(Kur/K) by Y. Ihara. In this paper, we will give the explicit number of Frobenius classes which generate whole group Gal(Kur/K).

ON FUNCTIONS STARLIKE WITH RESPECT TO n-PLY SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS

  • Malik, Somya;Ravichandran, Vaithiyanathan
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1025-1039
    • /
    • 2022
  • For given non-negative real numbers 𝛼k with ∑mk=1 𝛼k = 1 and normalized analytic functions fk, k = 1, …, m, defined on the open unit disc, let the functions F and Fn be defined by F(z) := ∑mk=1 𝛼kfk(z), and Fn(z) := n-1n-1j=0 e-2j𝜋i/nF(e2j𝜋i/nz). This paper studies the functions fk satisfying the subordination zf'k(z)/Fn(z) ≺ h(z), where the function h is a convex univalent function with positive real part. We also consider the analogues of the classes of starlike functions with respect to symmetric, conjugate, and symmetric conjugate points. Inclusion and convolution results are proved for these and related classes. Our classes generalize several well-known classes and the connections with the previous works are indicated.

A TORSION GRAPH DETERMINED BY EQUIVALENCE CLASSES OF TORSION ELEMENTS AND ASSOCIATED PRIME IDEALS

  • Reza Nekooei;Zahra Pourshafiey
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.797-811
    • /
    • 2024
  • In this paper, we define the torsion graph determined by equivalence classes of torsion elements and denote it by AE(M). The vertex set of AE(M) is the set of equivalence classes {[x] | x ∈ T(M)*}, where two torsion elements x, y ∈ T(M)* are equivalent if ann(x) = ann(y). Also, two distinct classes [x] and [y] are adjacent in AE(M), provided that ann(x)ann(y)M = 0. We shall prove that for every torsion finitely generated module M over a Dedekind domain R, a vertex of AE(M) has degree two if and only if it is an associated prime of M.

MATRIX TRANSFORMATIONS AND COMPACT OPERATORS ON THE BINOMIAL SEQUENCE SPACES

  • BISGIN, Mustafa Cemil
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.949-968
    • /
    • 2019
  • In this work, we characterize some matrix classes concerning the Binomial sequence spaces br,s and br,sp, where 1 ≤ p < ∞. Moreover, by using the notion of Hausdorff measure of noncompactness, we characterize the class of compact matrix operators from br,s0, br,sc and br,s into c0, c and ℓ, respectively.

SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES

  • KIM, JONGSU
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권4호
    • /
    • pp.359-364
    • /
    • 2015
  • We present smooth simply connected closed 4k-dimensional manifolds N := Nk, for each k ∈ {2, 3, ⋯}, with distinct symplectic deformation equivalence classes [[ωi]], i = 1, 2. To distinguish [[ωi]]’s, we used the symplectic Z invariant in [4] which depends only on the symplectic deformation equivalence class. We have computed that Z(N, [[ω1]]) = ∞ and Z(N, [[ω2]]) < 0.

DEPTH AND STANLEY DEPTH OF TWO SPECIAL CLASSES OF MONOMIAL IDEALS

  • Xiaoqi Wei
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.147-160
    • /
    • 2024
  • In this paper, we define two new classes of monomial ideals I𝑙,d and Jk,d. When d ≥ 2k + 1 and 𝑙 ≤ d - k - 1, we give the exact formulas to compute the depth and Stanley depth of quotient rings S/It𝑙,d for all t ≥ 1. When d = 2k = 2𝑙, we compute the depth and Stanley depth of quotient ring S/I𝑙,d. When d ≥ 2k, we also compute the depth and Stanley depth of quotient ring S/Jk,d.

중학생의 체육교사에 대한 신뢰와 체육수업 몰입 경험이 체육교과 태도 및 수업만족에 미치는 영향 (The Influence of Trust in Physical Education Teachers and Immersion Experience in Physical Education Classes on Attitude and Satisfaction During Physical Education Classes)

  • 박유찬
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제13권6호
    • /
    • pp.187-202
    • /
    • 2019
  • 본 연구에서는 체육교사 신뢰와 체육수업 몰입 경험이 중학생의 체육교과에 대한 태도와 체육수업 만족에 미치는 영향을 규명함으로써 체육교과에 요구되어지는 사회적 역할에 부응하고 학교체육 활성에 기여하는 데 목적이 있다. 본 연구는 광주광역시에 소재하는 중학교 학생을 대상으로 863명의 유효표본 자료를 분석하였다. 자료 분석은 SPSS window Ver 25 프로그램을 사용하여 빈도분석, 탐색적 요인분석, 신뢰도분석, 상관분석, 다중회귀분석을 실시하였다. 도출된 연구 결과는 다음과 같다. 첫째, 체육교사 신뢰의 하위 요인은 체육교과 태도의 하위 요인에 부분적으로 유의한 정(+)과 부(-)의 영향을 미쳤다. 둘째 체육교사 신뢰의 하위 요인은 체육수업 만족에 하위 요인에 따라 부분적으로 유의한 정(+)의 영향을 미치는 것을 나타났다. 셋째, 체육수업 몰입의 하위 요인은 체육교과 태도에 부분적으로 유의한 정(+)적 영향을 미치는 것으로 확인되었다. 넷째, 체육수업 몰입의 하위 요인은 체육수업 만족의 하위 요인에 부분적인 정(+)의 영향을 미치는 것으로 나타났다. 결과를 종합하면 중학교 학생들의 체육교과에 대한 긍정적 태도 형성과 체육수업 만족 향상에는 체육교사에 대한 학생의 신뢰와 체육수업에 대한 몰입 경험이 중요한 요인으로 작용한다. 관련하여 체육교사는 학생과의 신뢰를 형성하기 위한 노력 즉 다양한 상호작용을 통한 친근한 이미지 구축, 흥미롭고 체계적인 수업구성과 진행, 학생의 특성과 능력을 고려한 수준별 수업 적용 등의 노력이 지속되어야 한다. 또한 학생의 체육수업 몰입 경험을 제고하기 위해서 성과 및 순위 위주의 교육 방식을 지양하고 신체활동 자체에 의미를 부여하는 수업 분위기를 조성하여야 한다. 더불어 학생의 능력을 고려한 운동학습 과제 부여, 수업 집중도를 높일 수 있는 수업내용 선정 등의 노력이 함께 이루어져야 할 것으로 사료된다.

ISOMORPHISM CLASSES OF HYPERELLIPTIC CURVES OF GENUS 2 OVER F2n

  • Choi, Chun Soo;Rhee, Min Surp
    • 충청수학회지
    • /
    • 제15권2호
    • /
    • pp.1-12
    • /
    • 2003
  • L. H. Encinas, A. J. Menezes, and J. M. Masque in [2] proposed a classification of isomorphism classes of hyperelliptic curve of genus 2 over finite fields with characteristic different from 2 and 5. Y. Choie and D. Yun in [1] obtained for the number of isomorphic classes of hyperelliptic curves of genus 2 over $F_q$ using direct counting method. In this paper we will classify the isomorphism classes of hyperelliptic curves of genus 2 over $F_{2^n}$ for odd n, represented by an equation of the form $y^2+a_5y=x^5+a_8x+a_{10}(a_5{\neq}0)$.

  • PDF

Influences of Physical Education Classes based on Flipped Learning of Self-directed Learning Abilities and Attitude towards These Classes, for Middle School Students

  • Lee, Dae Jung;Kim, Dae Jin
    • International Journal of Contents
    • /
    • 제15권2호
    • /
    • pp.59-74
    • /
    • 2019
  • The objective of this study was to analyze the influence of physical education classes based on Flipped Learning on self-directed learning abilities and learning attitude towards these classes, for middle school students. The study selected 90 students as an experimental group (3 classes) and 97 students as a control group (3 classes), among 240 students of the first-year students attending a middle school located at Jeonju City of South Korea, applying convenience sampling, one of the non-probability sampling methods. For the experimental group, 36 sessions of physical education classes were held for 14 weeks, while the control group received teacher-centered classes. Comparing the results with the control group, the experimental group showed significant differences in terms of all sub factors of self-directed learning abilities, namely; desire for learning, learning objective establishment, basic self-management abilities, selection of learning strategy and self-reflection. Moreover, the experimental group manifested significant differences in terms of all sub factors of attitude towards the physical education subjects, namely; positive emotions, negative emotions, health & physical strength, interpersonal relations, physical activities & movements, and active participation & positive performance. From the findings, it can be considered that physical education classes based on Flipped Learning contributed to improving self-directed learning abilities and attitude towards physical education classes. This result can serve as a significant basic material for designing and performing classes in raising the understanding of Flipped Learning and effectively applying Flipped Learning in physical education classes.

ADMISSIBLE BALANCED PAIRS OVER FORMAL TRIANGULAR MATRIX RINGS

  • Mao, Lixin
    • 대한수학회보
    • /
    • 제58권6호
    • /
    • pp.1387-1400
    • /
    • 2021
  • Suppose that $T=\(\array{A&0\\U&B}\)$ is a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. Let ℭ1 and ℭ2 be two classes of left A-modules, 𝔇1 and 𝔇2 be two classes of left B-modules. We prove that (ℭ1, ℭ2) and (𝔇1, 𝔇2) are admissible balanced pairs if and only if (p(ℭ1, 𝔇1), h(ℭ2, 𝔇2) is an admissible balanced pair in T-Mod. Furthermore, we describe when ($P^{C_1}_{D_1}$, $I^{C_2}_{D_2}$) is an admissible balanced pair in T-Mod. As a consequence, we characterize when T is a left virtually Gorenstein ring.