• Title/Summary/Keyword: sub-branch splitting

Search Result 4, Processing Time 0.023 seconds

Dynamical transition of Josephson vortex lattice in serially stacked ${Bi_2}{Sr_2}{CaCu_2}{O_{8+x}}$ intrinsic Josephson junctions

  • Myung-Ho;Hu-Jong
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.52-55
    • /
    • 2004
  • The inductive coupling theory in serially stacked $Bi_2$$Sr_2$$CaCu_2$$O_{8+x}$ intrinsic Josephson junctions predicts that the lattice structure of the Josephson vortices along the c axis gradually changes from the triangular to the rectangular lattice with increasing the vortex velocity. This lattice transition appears as voltage jumps or sub-branch splitting in the Josephson vortex-flow region of current-voltage characteristics (IVC). We report the IVC in external magnetic fields from 2 to 4 T. The stack, with the lateral size of 1.4${\times}$15 $u\m^2$, was fabricated by using the double-side cleaving technique. The sub-branches in the Josephson vortex-flow region, corresponding to a plasma propagation mode in serially coupled intrinsic Josephson junctions, were also observed in the range of 2∼4T. Switching from one branch to another in Josephson vortex-flow region suggests the structural transition of the moving Josephson vortex lattice.

  • PDF

Coherent motion of microwave-induced fluxons in intrinsic Josephson junctions of HgI$_2$-intercalated Bi$_2$Sr$_2$C aCu$_2$O$_{8+x}$ single crystals

  • Kim, Jin-Hee;Doh, Yong-Joo;Chang, Sung-Ho;Lee, Hu-Jong;Chang, Hyun-Sik;Kim, Kyu-Tae;Jang, Eue-Soon;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.65-65
    • /
    • 2000
  • Microwave response of intrinsic Josephson junctions in mesa structure formed on HgI2-intercalated Bi2Sr2CaCu2O8+x single crystals was studied in a wide range of microwave frequency. With irradiation of 73${\sim}$76 GHz microwave, the supercurrent branch becomes resistive above a certain onset microwave power. At low current bias, the current-voltage characteristics show linear behavior, while at high current bias, the resistive branch splits into multiple sub-branches. The voltage spacing between neighboring sub-branches increase with the microwave power and the total number of sub-branches is almost identical to the number of intrinsic Josephson junctions in the mesa. All the experimental results suggest that each sub-branch represents a specific mode of collective motion of Josephson vortices generated by the microwave irradiation. With irradiation of microwave of microwave of frequency lower than 20 GHz, on the other hand, no branch splitting was observed and the current-voltage characteristics exhibited complex behavior at hlgh blas currents. This result can be explained in terms of incoherent motion of Josephson vortices generated by non-uniform microwave irradiation.

  • PDF

Coherent motion of fluxons in stacked intrinsic Josephson junctions of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+x}$ single crystals ($Bi_2Sr_2CaCu_2O_{8+x}$ 단결정 선천성 조셉슨 접합에서의 플럭손 결맞음 운동)

  • Doh, Yong-Joo;Chang, Hyun-Sik;Chang, Dong-In;Lee, Hu-Jong;Kim, Jinhee;Kim, Kyu-Tae;Lee, Woo;Choy, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.28-30
    • /
    • 2001
  • We studied the flux-flow current-voltage characteristics of microwave-generated fluxons formed in serially stacked intrinsic Josephson junctions fabricated on$ HgI_2$-intercalated $Bi_2$$Sr_2$$CaCu_2$O/8+x/(Bi2212) single crystals. With increasing the irradiation power of 73$\square$76 GHz microwave, the supercurrent branch became resistive and split into multiple sub -branches. Each sub-branch represented a specific mode of collective motion of Josephson fluxons. We also observed similar branch splitting In a mesa prepared on an underdoped Bi2212 single crystal in a static magnetic field.

  • PDF