• Title/Summary/Keyword: sub-bituminous

Search Result 73, Processing Time 0.021 seconds

A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler (500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Yoon, Min-Ji;Lee, Byoung-Hwa;Kim, Seung-Mo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

Studies on the Utilization of Low Quality Coals (1) Determination of combustion velocity of smokeless solid fuels (低質炭의 利用硏究 (第一報) 無燃固體燃料의 燃燒速度의 測定))

  • Oh, Shin-Sub;Kim, Chung-Hyuk
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.78-80
    • /
    • 1957
  • Up to now, only superficial studies on the combustion velocity of smokeless fuels have been reported, while it should be a basical factor on the utilization of low quality coals and some other smokeless solid fuels. It was, therefore, difficult to choose raw material coals in manufacturing gaseous fuels. With the intent to solve above problem, we have determined combustion velocity of domestic anthracites, graphites, coalites of lignite and cokes from Japanese bituminous coal. The results show that the cokes from Japanese bituminous coal which has been used as raw material in the manufacturing gaseous fuels such as water gas, or producer gas in Korea can be replaced by some sources of domestic anthracite or coalite of lignite.

  • PDF

Evaluation of self-heating propensity and its relation with fuel properties of various coals (다양한 탄종별 자체발열 특성과 물성의 비교 분석)

  • Kim, Jungsoo;Lee, Yongwoon;Im, Hyeon Soo;Park, Hoyoung;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.83-85
    • /
    • 2013
  • With an increase in the use of low rank coals in power plants, various operational issues were raised in the fuel storage and supply, combustion, boiler and flue gas treatment systems. In the fuel storage and supply system, the main issue is the self-heating propensity of low rank coals leading to spontaneous combustion in yard storage, transport and pulverization. This study evaluated the reactivity of various sub-bituminous and bituminous coals with oxygen at low temperatures by analyzing the temperature increase characteristics of coals under a constant flow rate of oxygen supply. The results were quantified to a self-heating index and the relation with the fuel properties were evaluated.

  • PDF

Estimation of Emission and Development of Emission Factor on Greenhouse Gas (CO2) of the Combustion Facilities (연소시설의 온실가스(CO2) 배출량 산정 및 배출계수개발)

  • Kim, Hong-Rok;Jin, Byong-Bok;Yoon, Wan-Woo;Kwon, Young-Sung;Lee, Min-Young;Yoon, Young-Bong;Shin, Won-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2007
  • Since the Kyoto Protocol became into effect, Korea has been expected to be part of the Annex I countries performing the duty of GHG reduction in the phase of post-Kyoto. Therefore, it is necessary to develop emission factors appropriate to Korean circumstances. In order to develop emission factors this study utilized the CleanSYS, which is the real-time monitoring system for industrial smoke stacks to calculate the emission rate of $CO_2$ continuously. In this study, the main focus was on the power generation plants emitting the largest amount of $CO_2$ among the sectors of fossil fuel combustion. Also, an examination on the comparison of $CO_2$ emission was made among 3 generation plants using the different types of fuels such as bituminous coal and LNG; one for coal and others for LNG. The $CO_2$ concentration of the coal fired plant showed Ave. 13.85 %(10,384 ton/day). The LNG fired plants showed 3.16 %(1,031 ton/day) and 3.19 %(1,209 ton/day), respectably. Consequently, by calculating the emission factors using the above results, it was found that the bituminous coal fired power plant had the $CO_2$ emission factor average of 88,726 kg/TJ, and the LNG fired power plants had the $CO_2$ average emission factors of 56,971 kg/TJ and 55,012 kg/TJ respectably which were similar to the IPCC emission factor.

Development of CO2 Emission Factors for Alternative Fuels with Assessment of Emission Reduction in Cement Industry (시멘트산업의 CO2 배출계수 개발 및 대체연료 사용에 의한 온실가스 저감량 산정 연구)

  • Yoon, Seok-Kyung;Myeong, Soo-Jeong;Jang, Tae-Hyeog;Kim, Jin-Su;Lee, See-Hyung;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • We developed emission factors for alternative fuels used in cement industries in Korea and also estimated reduction in emissions of greenhouse gas (GHG) by the use of alternative fuels. Emission factors for GHG of waste tire, waste plastic, waste oil and RDF were estimated to be about 89, 78, 77 and 95 ton $CO_2$/TJ respectively. When compared with previous studies, most of the results showed similar trends. The calorific value estimation and elemental analysis for energy source were implemented in order to estimate the exact emission factors and the reduction of GHG emissions using alternative fuel. In the case of 'A' company, $CO_2$ emission from alternative fuels was about 4% lower than that of bituminous coal only. Also in case of company 'B', $CO_2$ emission from alternative fuels was about 1.4% lower than that of only bituminous coal. In Germany and Japan, alternative fuel is not regarded to be fuel consumption in cement industry. When applying this rule, the emission reductions were about 4.3% for company 'A' and 6.3% for company 'B'. The results of this study may be considered as a useful information for developing strategies in reducing GHG emissions.

Investigation on the Leaching Potential of Water-Soluble Metals from Bottom Ashes in Coal-fired Power Plants (화력발전소 바닥재의 수용성 금속이온 용출가능성 조사)

  • Seo, Hyosik;Koh, Dong-Chan;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Bottom ash generated from thermal power plants is mainly disposed in landfills, from which metals may be leached by infiltrating water. To evaluate the effect of metals in leachate on soil and groundwater, we characterized bottom ash generated from burning cokes, bituminous coal, the mixture of bituminous coal and wood pellets, and charcoal powder. The bottom ash of charcoal powder had a relatively large particle size, and its wood texture was well-preserved from SEM observation. The bottom ash of charcoal powder and wood pellets had relatively high K concentration from total element analysis. The eluates of the bottom ash samples had appreciable concentrations of Ca, Al, Fe, SO4, and NO3, but they were not a significant throughout the batch test. Therefore, it is considered that there is low possibility of soil and groundwater contamination due to leaching of metal ions and anions from these bottom ash in landfills. To estimate the trend of various trace elements, long-term monitoring and additional analysis need to be performed while considering the site conditions, because they readily adsorb on soil and aquifer substances.

Advanced slagging propensity of coal and its assessment with the conventional indices (석탄회의 용융특성을 고려한 신개념 슬래깅 지수 평가)

  • Park, Ho Young;Im, Hyeon-Soo;Kim, Eui Hwan;Kim, Young Ju;Kim, Kyung Soo;Lee, Jeong Eun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.427-434
    • /
    • 2012
  • The fuel characteristics and combustion behaviors of bituminous (Anglo) and sub-bituminous (Tanito) coals used in 500MW coal fired power plant have been investigated. With ashes of those coals, the ash fusibility is characterized with thermo mechanical analyzer, and the advanced ash slagging propensity, BHEL index, has been obtained. The melting-down of tanito coal ash happened in the temperature range of 1,200 to $1,250^{\circ}C$, and for anglo coal ash it occurred near $1,550^{\circ}C$. BHEL indices for two coals gives the high slagging propensity, and these are compared with the existing traditional indices which give different tendencies.

Study on combustion and emission characteristics of chars from low-temperature and fast pyrolysis of coals with TG-MS

  • Liu, Lei;Gong, Zhiqiang;Wang, Zhenbo;Zhang, Haoteng
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.522-528
    • /
    • 2020
  • To achieve the clean and efficient utilization of low-rank coal, the combustion and pollutant emission characteristics of chars from low-temperature and fast pyrolysis in a horizontal tube furnace were investigated in a TG-MS analyzer. According to the results, the combustion characteristic of chars was poorer than its parent coals. The temperature range of gaseous product release had a good agreement with that of TGA weight loss. Gaseous products of samples with high content of volatile were released earlier. The NO and NO2 emissions of chars were lower than their parent coals. Coals of high rank (anthracite and sub-bituminous) released more NO and NO2 than low rank coals of lignite, so were chars from coals of different ranks. SO2 emissions of char samples were lower than parent coals and did not show obvious relationship with coal ranks.

Adequate Excessive Air Ratio for The Various Blended Coal at a USC Boiler (USC 보일러에서 혼합연료별 적정과잉공기비)

  • Park, Jin-Chul;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.2
    • /
    • pp.44-51
    • /
    • 2011
  • Given the fact that the entire bituminous coal used for a boiler is imported, the supply of coal is often affected by the rise of international coal price. Moreover, coal suppliers have been diversified due to the competition among power generation companies for reducing costs and inexpensive sub-bituminous coal is used. As a result, boilers combustion conditions have been deviated from the initial boiler design. This requires the selection of adequate excessive air ratio for different combustion conditions to enhance the efficiency of boiler operation. The boiler efficiency has been identified through an examination on the change of excessive air ratio by mixed fuel in unit 8 of Dangjin power plant complex. In addition, an excessive air ratio was calculated based on the examination result. According to the study result, the adequate excessive air ratio was 13% when Macquarie and Powder river were mixed at a ratio of 5:5 and when Sonoma and Megaprima persada were mixed at a ratio of 5:5. When BHP Billiton and Powder river were mixed at a ratio of 4:6 and Centennial and Batubara were mixed at a ratio of 3:7, the adequate excessive air ratio was 11%.

  • PDF