• Title/Summary/Keyword: sub-ballast

Search Result 27, Processing Time 0.02 seconds

Research directions for maintenance criteria in Slab Track (콘크리트궤도 유지보수기준 정립을 위한 연구방향)

  • Eom, Jong-Woo;Lee, Myung-Suk;Kwon, Jin-Soo;Kim, Soo-Jung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.979-987
    • /
    • 2011
  • The Ballast Track has been widely applied in traditionally due to low initial cost and abundant elastic property. But the disadvantages of Ballast track are; labor-intensive and costly maintenance, weak in high-speed and heavy axial load, in additionally need wide cross section of tunnel and massive substructure in viaduct. Therefore, recent applications tend to more and more towards slab track such as Gyeungbu high speed rail and existing line. The slab track increased the stability, resistance and durability of track, and save maintenance cost compare to the Ballast Track. But the slab track have weakness of track elongation by sub-ballast differential settlement and that threat safety of train operation. Therefor the slab track need to prevent cracks in concrete ballast for insure the durability of slab track. In this paper, review main items and its expected effects of the slab track maintenance standards that control sub-ballast settlement and concrete ballast cracks.

  • PDF

The development of auto Ballast Water Management Plan For Bulk Carrier. (BULK선용 자동 Ballast Water Management Plan 개발)

  • Hong, Chung-You;Kwon, Young-Sub;Kwon, Sung-Jin;Hwang, Jin-Wook;Park, Je-Woong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.266-271
    • /
    • 2003
  • Many port states such as New Zealand. the USA. Australia and Canada have strict regulations to prevent ships which arrive in their port from discharging polluted ballast water which contain harmful aquatic organism and pathogens. They are notified that transfer of polluted ballast water can cause serious injury to public health and damage to property and environment. For this reason. they perceived that the ballast exchange in deep sea is the most effective method. together with submitting the ballast management plan which contains the effective exchange method. ballast system and safety consideration. In this study, we make an effort to develop optimum ballast water exchange management and in result of that. it provide more convenient and stable process to prepare ballast water management plan for Bulk Carrier.

  • PDF

Reinforcement of Soft Soil Subgrade for High-Speed Railroad Using Geocell (연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과)

  • 김진만;조삼덕;윤수호;정문경;김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.129-141
    • /
    • 1999
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell where it is used to reinforce soft subgrade for high-speed railroad. Efficacy of geocell was observed in increase in bearing capacity of subgrade and reduction of thickness of reinforced sub-ballast. Plate load tests were carried out at four different places with varying foundation soil strength as a function of number of geocell layer, type of filler material, thickness of cover soil, and the presence of non-woven geotextile. Dynamic load tests were performed in a laboratory. The test soil chamber consists of, from the bottom, 50 cm thick clayey soil, one layer of geocell filled with crushed stone, 10 cm thick crushed stone cover, reinforced sub-ballast of varying thickness, 35 cm thick ballast. This configuration was determined based on the results of numerical analysis and plate load tests. For each set of the dynamic load tests, loads were applied more than 80,000 times. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times compared to a crushed stone layer of the same thickness substituted for the geocell and cover soil layer. Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In the trackbed design using elastic multilayer model, the stress-dependent resilient modulus $(E_R)$ is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. The this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil (SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments

  • Hyun, Bonggil;Choi, Keun-Hyung;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Moon, Chang-Ho;Shin, Kyoungsoon
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1003-1012
    • /
    • 2014
  • We examined the combined impacts of future increases of $CO_2$ and temperature on the growth of four marine diatoms (Skeletonema costatum, Chaetoceros debilis, Chaetoceros didymus, Thalassiosira nordenskioeldii). The four strains were incubated under four different conditions: present ($pCO_2$: 400ppm, temperature: $20^{\circ}C$), acidification ($pCO_2$: 1000ppm, temperature: $20^{\circ}C$), global warming ($pCO_2$: 400ppm, temperature: $25^{\circ}C$), and greenhouse ($pCO_2$: 1000ppm, temperature: $25^{\circ}C$) conditions. Under the condition of higher temperatures, growth of S. costatum was suppressed, while C. debilis showed enhanced growth. Both C. didymus and T. nodenskioldii showed similar growth rates under current and elevated temperature. None of the four species appeared affected in their cell growth by elevated $CO_2$ concentrations. Chetoceros spp. showed increase of pH per unit fluorescence under elevated $CO_2$ concentrations, but no difference in pH from that under current conditions was observed for either S. costatum or T. nodenskioeldii, implying that Chetoceros spp. can take up more $CO_2$ per cell than the other two diatoms. Our results of cell growth and pH change per unit fluorescence suggest that both C. debilis and C. didymus are better adapted to future oceanic conditions of rising water temperature and $CO_2$ than are S. costatum and T. nodenskioeldii.

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Parametric Study on the Safety of CWR Track over High-Speed Railway Bridges (매개변수해석을 통한 고속전철교량상 장대레일궤도 안전성 검토)

  • 강재윤;김병석;김영진;박성용;조정래;최은석;진원종
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Where the track is continuously welded over the bridge, the longitudinal forces will be distributed interactively between the track and the sub-structure by the rail-bridge interaction mechanism. The ratio between the longitudinal forces transmitted in each elements depends on the magnitude of the ballast resistance and the stiffness of the sub-structures. In this paper, the main factors affect on the longitudinal rail force are discussed and the parametric study for the behavior of CWR(Continuous Welded Rail) track was executed. It is concluded that the horizontal ballast resistance and the stiffness of the bridge sub-structure are the significant parameters affecting the stability of the continuous welded rail track.

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung;Son, Eui-Jeong;Cha, Ju-Hong;Kang, Myung Chang;Lee, Ho-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2256-2261
    • /
    • 2017
  • Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

Reinforcing Effect of Geocell on Soft Soil Subgrade for High-speed Railroad (연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과)

  • 조삼덕;윤수호;김진만;정문경;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.5-12
    • /
    • 2002
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell which is used to reinforce soft subgrade for high-speed railroad. Efficiency of geocell was observed in the increase in bearing capacity of subgrade and in the reduction of thickness of reinforced sub-ballast. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times larger than that of a crushed stone layer of the same thickness substituted for the geocell and cover soil layer Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.