• Title/Summary/Keyword: styrofoam

Search Result 159, Processing Time 0.023 seconds

Rootzone Profile, Trickle Irrigation System and Turfgrass Species for Roof Turf Garden (옥상녹화에 적합한 지반, 점적 관수 및 잔디 선정)

  • 이재필;한인송;주영규;윤원종;정종일;장진혁;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • This study was conducted to find out suitable rootzone profile, irrigation system, and turfgrass species for roof turf garden. Treatments of profile with soil amendment were Mixture I: Perlite(PL)60%+Vermiculite(VC)20%+Peatmoss(PM)20%, Mixture II: PL60%+VC 10%+PM20%+Sand(SD)10%, Mixture III: PL60%+VC20%+PM20% and Mixture IV: PL60%+VC10%+PM20%+SD10%+Styrofoam 5cm as a drain layer. To test trickle irrigation for roof garden, intervals of main pipe spacing(50cm, 100cm) and drop hole distance(15, 20, 30, 50 and 100cm)were treated, To select most suitable turfgrass species or mixture, Bermudagrass 'Konwoo', Zoysiagrass 'Konhee' and cool-season grass(Kentucky Bluegrass 80% + Perennial Ryegrass 20%, Tall Fescue 30% + KB50% + PR 20%)were tested. In particle size analysis, the soil amendments Perlite and vermiculite showed very even distribution, however, peatmoss contained mostly coarse particles with fiber over $\Phi$ 4.75mm. Under field moisture condition, vermiculite and peatmoss showed 350% water holding capacity, on the other hand, sand or Perlite showed 115% and 166%, respectively. Total weight of soil profile was 139.2kg/$m^2$ with Styrofoam drain layer without sand, which showed most lightest among treatments. Turf quality also resulted positve with Styrofoam drain layer installation. On trickle irrigation system, the proper interval of main drain pipe spacing and drop hole distance were 50cm and 50cm, respectively, In irrigation frequency, once per a day for 15 minute irrigation with 2 1/hr showed the best results on turf quality. Among turfgrass species or cool season grass mixture, warm season turfgrass fine leaf type zoysiagrass 'Konhee' and Bermudagrass 'Konwoo' showed very acceptable result on all over the treatments of rootzone and irrigation system. To apply cool season grasses for the roof garden, advanced researches may be needed to establish the proper soil amendment, rootzone profile, and irrigation system, Application of Bermudagrass 'Konwoo' for roof turf garden also needs successive tests to overcome winter injuries.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Image Analysis of Angle Changes in the Forearm during Elbow Joint Lateral General Radiography: Evaluation of Humerus Epicondyle and Elbow Joint (팔꿉관절 측방향 일반촬영에서 아래팔뼈 각도 변화에 따른 영상 분석 : 위팔뼈 위관절융기와 팔꿉관절 평가)

  • Hyo-Soo Shin;Hye-Won Jang;Jong-Bae Park;Ki Baek Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.607-614
    • /
    • 2023
  • Clear overlapping of the bilateral epicondyle and proper separation of the elbow joint are crucial for obtaining accurate lateral general radiographs of the elbow. However, due to the complex anatomical structure of the elbow, achieving optimal positioning is challenging, leading to the need for repeated x-ray examinations. Therefore, the purpose of this study was to investigate the angle of the forearm in patients where accurate lateral images of the elbow joint can't be obtained after vertical incidence using a styrofoam device during elbow joint lateral x-ray imaging. Twenty patients were enrolled in our study following the established protocol. First, a vertical x-ray at an angle of 0° between the forearm and the table was taken (control group). Here, if the lateral image of the elbow joint was deemed inadequate, the forearm angle was adjusted using custom-made styrofoam supports with 5° and 10° inclinations (experimental groups). For the evaluation method, two assessors utilized a 5-point Likert scale to assess the images. The reliability of the assessments was analyzed using Cronbach's alpha coefficient. As a result, patients with inadequate overlap of the bilateral epicondyle and separation of the elbow joint in the initial examination (control group) were able to obtain the best images when setting a 10° angle between the forearm and the table. The subjective evaluation was 1.6 ± 0.8 points at 0°, 2.7 ± 0.8 points at 5°, and 4.4 ± 1.3 points at 10°, respectively. The reliability analysis for the angles of 0°, 5°, and 10° yielded Cronbach's alpha values of 0.867, 0.697, and 0.922, respectively. In conclusion, when it is not possible to obtain accurate images using the conventional position and X-ray beam direction, it is considered that by initially acquiring images with an angle of 10° between the forearm and the table, and gradually decreasing the angle while obtaining images, it would be possible to achieve the optimal image while reducing the number of repeat examinations.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

Practical Virtual Compensator Design with Dynamic Multi-Leaf Collimator(dMLC) from Iso-Dose Distribution

  • Song, Ju-Young;Suh, Tae-Suk;Lee, Hyung-Koo;Choe, Bo-Young;Ahn, Seung-Do;Park, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Yi, Byong-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.129-132
    • /
    • 2002
  • The practical virtual compensator, which uses a dynamic multi-leaf collimator (dMLC) and three-dimensional radiation therapy planning (3D RTP) system, was designed. And the feasibility study of the virtual compensator was done to verify that the virtual compensator acts a role as the replacement of the physical compensator. Design procedure consists of three steps. The first step is to generate the isodose distributions from the 3D RTP system (Render Plan, Elekta). Then isodose line pattern was used as the compensator pattern. Pre-determined compensating ratio was applied to generate the fluence map for the compensator design. The second step is to generate the leaf sequence file with Ma's algorithm in the respect of optimum MU-efficiency. All the procedure was done with home-made software. The last step is the QA procedure which performs the comparison of the dose distributions which are produced from the irradiation with the virtual compensator and from the calculation by 3D RTP. In this study, a phantom was fabricated for the verification of properness of the designed compensator. It is consisted of the styrofoam part which mimics irregular shaped contour or the missing tissues and the mini water phantom. Inhomogeneous dose distribution due to the styrofoam missing tissue could be calculated with the RTP system. The film dosimetry in the phantom with and without the compensator showed significant improvement of the dose distributions. The virtual compensator designed in this study was proved to be a replacement of the physical compensator in the practical point of view.

  • PDF

Development of Forms for Cold Weather Concrete by Combination of Insulation (단열재 조합에 의한 한중콘크리트용 거푸집 개발)

  • Han, Cheon-Goo;Oh, Seon-Kyo;Sin, Dong-An;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.392-399
    • /
    • 2003
  • This paper discusses the validities of insulating curing of cold weather concreting at early stage by applying insulation forms. Tests were carried out using modified insulating form combining existing insulating form and various other insulations in order to develop improved insulation form. Temperature history of concrete using various insulating forms and insulation was measured to determine most effective combination of insulting form. According to results, as for the wall form, under the curing temperature of $-10^{\circ}C$, the temperature of concrete using Euro form drops sharply before 24 hours and lasts below $0^{\circ}C$ for 7 hours. The temperature of concrete using the form combining Polypropylene panel, styrofoam and plywood panel keep above $0^{\circ}C$. And, it is confirmed that the form mentioned above has a favorable effects on enhancing strength development of concrete and the cost to make the forms shows more reasonable than that of existing forms. However, as for the combination methods of insulation form for slab, which is composed of insulating form at the bottom of slab and various surface curing materials at the top of slab, in case of exposed condition at the top of slab, temperature history of concrete goes below $0^{\circ}C$ after 10 hours. In case of the combination of vinyl sheet and curing blanket, it drops below $0^{\circ}C$ after 42 hours. However, in case of the combination of vinyl, styrofoam and curing blanket, it does not go below $0^{\circ}C$ until 55 hours. Accordingly, compared to the case of exposure and the combination of vinyl and curing blanket, it indicates that the combination mentioned above has more effective insulating performance.

Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5 (라즈베리파이와 YOLOv5를 이용한 해양쓰레기 시계열 변화량 분석)

  • Bo-Ram, Kim;Mi-So, Park;Jea-Won, Kim;Ye-Been, Do;Se-Yun, Oh;Hong-Joo, Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1249-1258
    • /
    • 2022
  • Marine debris is defined as a substance that is intentionally or inadvertently left on the shore or is introduced or discharged into the ocean, which has or is likely to have a harmful effect on the marine environments. In this study, the detection of marine debris and the analysis of the amount of change on marine debris were performed using the object detection method for an efficient method of identifying the quantity of marine debris and analyzing the amount of change. The study area is Yuho Mongdol Beach in the northeastern part of Geoje Island, and the amount of change was analyzed through images collected at 15-minute intervals for 32 days from September 12 to October 14, 2022. Marine debris detection using YOLOv5x, a one-stage object detection model, derived the performance of plastic bottles mAP 0.869 and styrofoam buoys mAP 0.862. As a result, marine debris showed a large decrease at 8-day intervals, and it was found that the quantity of Styrofoam buoys was about three times larger and the range of change was also larger.

Development and application of a technique for detecting beach litter using a Micro-Unmanned Aerial Vehicle

  • Jang, Seon Woong;Kim, Dae Hyun;Chung, Yong Hyun;Seong, Ki Taek;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.351-366
    • /
    • 2014
  • The aim of this study was to develop software for beach litter detection that includes a Graphical User Interface (GUI) and uses images taken by a micro-unmanned aerial vehicle. Videos were taken over Doomo pebble beach, Sogye pebble beach, and Heungnam sand beach on the northeast coast of Geojedo (Geoje Island), Korea. Still images of actual beach litter were obtained from the videos. The image processing involved preprocessing, morphological image processing, and image recognition. Comparison with still images showing beach litter demonstrated that the software could generally detect litter larger than 50 cm in size such as Styrofoam buoys and circular fish traps (excluding small pixel-size ropes). Combining the proposed method with the conventional surveying approach is expected to enhance the accuracy of beach litter detection. The new technique will also aid in predicting the amount of beach litter generated along coastlines, which is currently difficult to monitor.

Development of Three-dimensional CAD System for Die Design for Automotive Body Panels (자동차 프레스 금형 설계를 위한 3차원 CAD 시스템의 개발)

  • Lee, Sang-Hwa;Ryu, Seung-Woo;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • Recently three-dimensional (3-D) die design and production process has been widely introduced into the tooling shops of automotive manufacturers to reduce time-to-production of brand-new automobiles. 3-D solid models created in CAD systems are used not only for various simulations for design verification, but also for NC tool path generation to machine dies and their Styrofoam patterns. However, a lot of time and cost will be required to build solid models for dies if designers use only the generalized modeling capabilities of commercial 3-D CAD systems. To solve this problem, it is necessary to customize 3-D CAD system for the specific die design and manufacturing process. This paper describes a dedicated 3-D CAD system based on Unigraphics for die design for automotive body panels. The system provides not only 3-D design capabilities, but also standard part libraries, to enhance design productivity. The design process modeling technology has been introduced to facilitate redesign of the die for the modified panel. By introducing this system, dies can be designed more rapidly in the 3-D space, and their solid data can be directly transferred to CAM tools for NC tool path generation and simulation tools for virtual manufacturing.

Rapid and Tangible Method of Product Design using Augmented Reality Technology (증강 현실을 이용한 산업 제품의 빠르고 효과적인 디자인 방법)

  • Jin, Yoon-Suk;Kim, Yang-Wook;Kim, Bo-Mi;Park, Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.55-58
    • /
    • 2008
  • Designers, who design industry products, use CAD(Computer Aided Design) tools for making new design and looking around virtual 3D models. Hand-drawings and sketches show only one viewpoint limiting 3D perception. However, CAD system that provides automation and multiple view points, can help to save time and cost. Accordingly, we developed Augmented Reality(AR) and Rapid Prototyping(RP) based product design system that is interactive and realistic This AR based design system utilize mockups that are made of urethane and styrofoam where as users change 3D model's color, texture and user interface. These interactive ways help to evaluate design more instinctively.

  • PDF