• Title/Summary/Keyword: styrenic polymers

Search Result 7, Processing Time 0.022 seconds

Styrenic Polymer/Organoclay Nanocomposite Prepared via in-situ Polymerization with an Azoinitiator Linked to an Epoxy Oligomer

  • Jeong, Han-Mo;Choi, Mi-Yeon;Kim, Min-Seok;An, Jin-Hee;Jung, Jin-Su;Kim, Jae-Hoon;Kim, Byung-Kyu;Cho, Sung-Man
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.610-616
    • /
    • 2006
  • An azoinitiator linked to an epoxy oligomer, which could easily diffuse into the organoclay gallery and swell it, was used as an initiator to enhance the delamination of an organoclay, Cloisite 25A, in a matrix of styrenic polymers, poly(styrene-co-acrylonitrile) and polystyrene, during the preparation of a nanocomposite via an in-situ polymerization method. X-ray diffraction results and transmission electron microscopic observation of the morphology showed that the epoxy segment enhanced not only the delamination but also the extrication of ammonium cations from the organoclay gallery into the polymer matrix. The latter phenomenon induced the structural change of the alkyl group of ammonium cations in the gallery from a bilayer to monolayer structure, and also decreased the glass-rubber transition temperature as measured by a differential scanning calorimeter and dynamic mechanical analyzer.

Synthesis of Polymers Having N-Hydroxymaleimide Units by Thermolysis of N-(Isopropyloxycarbonyloxy)maleimide Polymers

  • An, Gwang Deok;C. Grant Willson
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.443-449
    • /
    • 1995
  • N-(Isopropyloxycarbonyloxy)maleimide (iPOCMI) has been synthesized and polymerized to give both the homopolymer and copolymers with substituted styrenes. These polymers were readily deprotected by thermolysis of the isopropyloxycarbonyl (iPOC) groups to provide the corresponding N-hydroxymaleimide (HOMI) polymers. The homopolymer and styrenic copolymers of iPOCMI were radically obtained in higher conversion and higher molecular weight than those obtained by direct polymerizations of N-hydroxymaleimide. The homopolymer of iPOCMI was transformed into poly(N-hydroxymaleimide)P(HOMI) by thermolysis of iPOC groups at 205 $^{\circ}C$ with concurrent release of propene and carbon dioxide. The copolymer of iPOCMI and styrene was thermally deprotected to the copolymer of HOMI and styrene at 235 $^{\circ}C.$ The mass loss was 28% and the Tg of the resulting copolymer was 250 $^{\circ}C.$ The thermal deprotection readily provided the desired, polar HOMI polymers which have Tgs above 240 $^{\circ}C.$ The deprotection was accompanied by large changes in aqueous base solubility.

($n^5$-Indenyl)trichlorotitanium-catalyzed Copolymerization of Styrene and Styrenic Macromonomer Carrying a Functional Group

  • Kim, Jungahn;Kim, Keon-Hyeong;Jin, Yong-Hyeon;Hyensoo Ryu;Soonjong Kwak;Kim, Kwang-Ung;Hwang, Sung-Sang;Jo, Won-Ho;Jho, Jae-Young
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 2000
  • Styrenic macromonomers with/without a silyloxy-functional group were synthesizedvia chain-end functionalization using 4-vinylbenzyl chloride as a terminating agent insec-butyllithium-initiated polymerization of styrene. The yields were 92 mol% for the silyloxy group and 88 mol% for the styrenic unit. Crystalline polystyrene-g-amorphous polystyrenes were synthesized by (η$^{5}$ -indenyl)-trichlorotitanium ((Ind)TiCl$_3$)-catalyzed copolymerizations of the macromonomers with styrene in the presence of methyl-aluminoxane (MAO) in toluene at 4$0^{\circ}C$. The macromonomer having $\alpha$, $\alpha$'-bis (4-[tert-butyldimethylsilyl-oxy]phenyl) group was also utilized for the preparation of a precursor of hydroxyl-functionalized syndio-tactic polystyrene. The obtained polymers were characterized by a combination of$^1$H, $^{13}$ C NMR spectroscopic, size exclusion chromatographic, and differential scanning calorimetric analysis. The (Ind)TiCl$_3$-catalyzed copolymerization of styrene with the macromonomer carrying the silyloxy functional group was found to be an efficient method to modify syndiotactic polystyrene without a great loss of physica] property by controlling the feud ratio of the macromonomer.

  • PDF

PREPARATION OF POLYMERIC PHOTOSTABILIZERS CONTAINING HALS GROUPS AND THEIR PHOTOSTABILIZATION EFFECTS ON POLYSTYRENE

  • Chae, Kyu Ho;Oh, Jae-Seong;Ham, Heui Suk
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.167-169
    • /
    • 1996
  • Absorption of UV light induces photocleavage of polymer chains to produce free radicals which initiate photodegradation of the polymer molecules. Discoloration, cracking of surface, stiffening, and decreasing of mechanical properties of polymeric products occur as a result of photodegradation of the polymers. Photostabilizers are added to the polymer systems in order to minimize the unwanted effects of UV light. It is well known that Hindered Amine Light Stabilizers (HALS) are one of the most effective photostabilizer for polymers.' HALS have been used in a large number of commercial polymers and predominantly used in styrenic and engineering plastics. They are efficient and cost-effective in many applications despite their high prices. However, low molecular weight HALS vaporize easily, emitting harmful amines, and have poor extraction resistance, decreasing their photostabilization effect. They also decompose during processing and migrate within the polymers resulting in deposition on the polymer surfaces called 'blooming". These drawbacks of low molecular HALS can be overcome by use of the polymeric HALS. We have been studying photochemical reactions of the polymer systems. The present paper reports the preparation of a new polymeric photostabilizer containing HALS groups and their stabilization effects on photooxidation of polystyrene. The synthetic scheme for the preparation of polymeric photostabilizers containing HALS groups were shown at Scheme 1. N-[(Chloroformyl) phenyl]maleimide (CPMI) and N-[4-(chlorocarbonyl) phenyl]maleimide (CPMIC) were prepared by the known procedure. N[4-N'-(2,2,6,6-tetramethyl-4-piperidinyl)aminocarbonyl-phenyl] maleimide (TMPI) was prepared by the reaction of CPMI with 4-amino-2,2,6,6-tetramethylpiperidine (ATMP).

  • PDF

Studies on the Styrenic Polymers(1), Imidization of Poly(styrene-co-maleic anhydrides) and Their Thermal Properties (Styrenic Polymers연구(1), Poly(styrene-co-maleic anhydride)의 이미드화와 열적 성질)

  • Ahn, Tae-Oan;Park, Lee-Soon;Lee, Sang-Soo;Kim, Gi-Heon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.179-187
    • /
    • 1992
  • Poly(styrene-co-maliec anhydride) was reacted with aromatic amines such as aniline, p-toluidine, and p-chloroaniline in 10% (w/w) DMF solution to convert maleic anhydride units into maleimides. Optimum reaction conditions for cyclodehydration step of imide ring formation were : (a) reaction temp. of $80^{\circ}C$ (b) mole ratios of cyclodehydration agents : anhydride units in SMA/acetic anhydride/sodium acetate/triethyl amine= 1.0/2.0/0.2/1.1. $T_g$of SMI(imide modified SMA) was increased with increasing degree of imidization, but $T_g$leveled off in the early stage of imide content. And $T_g$of SMI was increased with the following order of amines used for imidization reagents : aniline < p-toluidine < p-chloroaniline.

  • PDF

Effects of the Interaction between Intercalant and Matrix Polymer in Preparation of Clay-dispersed Nanocomposite

  • Ko, Moon-Bae;Kim, Jyunkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.120-124
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, styrenic polymers with different content of functional groups and two different organophilic clays (Cloisite(R) 25A and Cloisite(R)30A) with a twin screw extruder. Dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffraction method and a transmission electron microscope. It was found that if the interaction force between intercalant and matrix polymer is attractive, the matrix polymer intercalates more rapidly into the gallery of silicate layers. The faster intercalation of matrix polymer leads to the better dispersibility of silicate layers in the matrix polymer.

  • PDF

Transient Protection of Intramolecular Hydrogen Bonding: A Simple but Elegant Approach for Functional Imaging

  • Kim, Jong-Man;Min, Sung-Jun;Park, Bum-Jun;Lee, Jae-Hyung;Ahn, Kwang-Duk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.493-500
    • /
    • 2004
  • We have developed a novel method for patterning functional images in thin polymer films. The key materials we utilized for the imaging were dihydroxyanthraquinones protected with acid-labile tert-butoxycarbonyl (t-Boc) blocking groups. Among the tested compounds, 1,4-dihydroxyanthraquinone (quinizarin; 1) underwent the most drastic change in terms of its color and fluorescence upon protection. We prepared the t-Boc-protected quinizarin and polymers bearing the protected quinizarins as pendent groups. To investigate the possibility of a single-component imaging system, we synthesized a styrenic monomer 14 incorporating protected quinizarin and a maleimide derivative 15 bearing a photoacid generating group and subjected them to polymerization. Selective removal of the protecting groups of the quinizarin moieties in the exposed area using photolithographic techniques allowed regeneration of quinizarin and patterned fluorescence images in the polymer films.