• 제목/요약/키워드: styrene-butadiene-styrene

검색결과 330건 처리시간 0.024초

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • 제53권3호
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

카본 블랙/유기화 클레이로 보강된 SBR 나노 복합재료: 모폴로지와 기계적 물성 (Properties of SBR Nanocomposites Reinforced with Organoclay/Carbon Black Dual Phase Fillers)

  • 강병석;김원호
    • Elastomers and Composites
    • /
    • 제42권1호
    • /
    • pp.9-19
    • /
    • 2007
  • 본 연구에서는 카본블랙과 유기화 클레이(C18-MMT) 로 보강된 SBR 나노 복합재료를 라텍스법(latex method)으로 제조하였다. 필러의 함량은 50 phr로 고정하였으며, 카본 블랙/C18-MMT의 함량비를 50/0, 49/1, 48/2, 47/3, 45/5, 44/6, 40/10 phr로 정하고 함량비에 따른 가황 특성 및 기계적 물성을 비교하였다. 각 컴파운드의 가황 특성 및 기계적 물성을 비교 평가한 결과 carbon black(49phr)/C18-MMT(1phr) 컴파운드가 ODR에서 가장 높은 최대 토크 값을 나타내었으며, 높은 인장 강도 및 모듈러스, 인열 에너지를 나타내었다. 이러한 기계적 물성 증가는 클레이의 박리 정도 및 분산도의 향상으로 인한 C18-MMT의 우수한 보강 효과 때문이라고 판단된다.

Multi-Walled Carbon Nanotubes (MWCNT) 인쇄박막의 제작과 화학센서 동작 특성에 관한 연구 (A Study on the Fabrication of Multi-Walled Nanotubes (MWCNT) Based Thin Film and Chemical Sensor Operation Characteristics)

  • 노재하;최준석;고동완;서준영;이상태;정정열;장지호
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.181-185
    • /
    • 2020
  • Hazardous and noxious substance (HNS) detection sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) and various binder materials for ion batteries. To obtain uniformly printed films, the printing precision according to the substrate cleaning method was monitored, and the printing paste mixing ratio was investigated. Binders were prepared using styrene butadiene rubber + carboxymethyl cellulose (SBR+CMC), polyvinylidene fluoride + n-methyl-2-pyrrolidene (PVDF+NMP), and mixed with MWCNTs. The surface morphology of the printed films was examined using an optical microscope and a scanning electron microscope, and their electrical properties are investigated using an I-V sourcemeter. Finally, sensing properties of MWCNT printed films were measured according to changes in the concentration of the chemical under the various applied voltages. In conclusion, the MWCNT printed films made of (SBR+CMC) were found to be feasible for application to the detection of hazardous and noxious chemicals spilled in seawater.

ABS와 PS 혼합(混合) 폐플라스틱 재질분리(材質分利)를 위한 마찰하전형정전선별(摩擦荷電型靜電選別) 기술개발(技術開發) (Development of Triboelectrostatic Separation Technique for Material Separation of ABS and PS Mixed Plastic Waste)

  • 이은선;백상호;김수강;최우진;진호일;전호석
    • 자원리싸이클링
    • /
    • 제22권6호
    • /
    • pp.33-40
    • /
    • 2013
  • 다양한 분야에 사용되고 있는 플라스틱은 최근 환경문제가 대두되면서 재활용 이슈가 부각되고 있다. 본 연구에서는 마찰하전형정전선별을 적용하여 ABS(Acrylonitrile Butadiene Styrene)와 PS(Polystyrene)의 혼합된 폐플라스틱으로부터 ABS를 회수하기 위한 재질분리 연구를 수행하였다. 하전물질의 재질선정을 위한 하전특성연구결과, ABS재질이 대상시료인 ABS와 PS의 혼합 폐플라스틱의 재질분리에 효과적인 하전재질로 확인되었다. 선정된 하전물질을 적용하여 마찰하전형정전선별을 수행한 결과, 공급전압세기 20 kV, 분리대위치 양극방향 2 cm 그리고 상대습도 30%에서 ABS의 품위와 회수율이 각각 99.5%와 92.5%인 결과를 얻어, ABS와 PS의 혼합 플라스틱의 재활용을 위한 재질분리 기술을 확립하였다.

고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작 (Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder)

  • 김채훈;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제44권4호
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어 (Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents)

  • 박지훈;전혜준;오영석;박경호;윤충식
    • 한국산업보건학회지
    • /
    • 제28권3호
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정 (Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure)

  • 박지훈;전혜준;박경호;윤충식
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

어린이용품의 환경유해인자 표시 현황과 독성자료에 대한 연구 (Investigation of Labeling Status and Toxicity Data of Environmentally Hazardous Substances in Children's Products)

  • 이지윤;김지효;문명희;이기영;지경희
    • 한국환경보건학회지
    • /
    • 제45권5호
    • /
    • pp.443-456
    • /
    • 2019
  • Objectives: Children are exposed to various environmental pollutants through contact with children's products. We investigated the KC mark, certification number, and contained substances labeled on children's products through market research and collected the toxicological data on these substances. Methods: The environmentally hazardous substances labeled on children's products (n=6576), including toys (n=2812), personal care products (n=2212), stationary/books (n=1333), and playground equipment (n=219) were examined. For the components that could be identified by CAS number, toxicological data on oral, inhalation, and dermal routes, cancer slope factor, and reference dose were collected. Results: Among the investigated products, KC marks or certification numbers were found for 4557 products (69.3%). Except for cosmetics and cleansers, the material information was labeled on most of the products. The frequency of labeling substance information in toys and stationary/books was low since this information could be omitted if KC certification was obtained. In the target products, 617 substances were identified by CAS number, and polypropylene, acrylonitrile butadiene styrene, and polyester were the most frequently displayed. Chronic toxicity data was found for only 32.4% of individual components, and information on toxicity through the dermal route was also highly limited. Conclusion: Our study suggested that labeling guidelines should be required to identify the environmentally hazardous substances contained in children's products. In addition, the toxicological data on many ingredients in children's products were insufficient. The data gap for toxicity data should be filled for future risk assessment.

실리콘 오일 점도에 따른 ABS-like 레진의 트라이볼로지 특성 (Tribological Characteristics of ABS-like Resin According to Silicon Oil Viscosity)

  • 박성현;손준규;우성웅;류의진;이현섭
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.365-370
    • /
    • 2020
  • Recently, additive manufacturing (AM) technology has been applied to various industries such as automotive, aviation, medical, and electronics. Most prior studies are limited to the mechanical properties of printed materials, and few studies are being conducted on their tribological characteristics. However, the friction and wear characteristics of the material should be studied in order to utilize the components manufactured using AM technology as mechanical parts. In this study, the friction and wear characteristics of acrylonitrile-butadiene-styrene (ABS)-like resin printed with stereo lithography apparatus (SLA) 3D printing are evaluated according to the viscosity of silicon oil lubricant using a ball-on-disk experiment. Lubricants with a viscosity of 500, 1000, and 2000 cSt are prepared for the experiment. If silicon oil lubricants are used during the ball-on-disk test, the coefficient of friction (COF) and wear rates are significantly reduced, and the higher the viscosity of the lubricant, the lower will be the COF and wear rates. It is also verified that the temperature of the specimen owing to friction also decreases according to the viscosity of the lubricant. This is because of the silicon oil film thickness, and the higher the viscosity of the lubricant, the thicker will be the oil film. More studies on the tribological characteristics of 3D printing materials and suitable lubricants will be required to use 3D printed parts as mechanical elements.