• 제목/요약/키워드: styrene-butadiene-styrene

검색결과 330건 처리시간 0.024초

An Experimental Study on the Thermal Shock Behavior of PC/PET Alloy (PC/PET 합금의 열충격 특성에 관한 연구)

  • 유인자;이영순;이재학
    • Journal of the Korean Society of Safety
    • /
    • 제10권2호
    • /
    • pp.64-71
    • /
    • 1995
  • Tests were performed to evaluate the effect of thermal shock behavior on the mechanical properties of PC(poly-carbonate) and PET(polyethylene-terephthalate) with MBS(methylmethacrylate-butadiene-styrene) alloy. Five different material weight fraction for PC/PET were employed : 0/100, 25/75, 50/50, 75/25, and 100/0. Three different weight fraction of MBS were added to each PC/PET : 0, 3, and 9. Therefore fifteen different types of PC/PET/MBS were prepared using single screw extrude. and injection molding machine. One thermal shock cycle consisted of each one hour stay at -$40^{\circ}C$ chamber and $+80^{\circ}C$ chamber without delay. Specimens were thermal shocked up to 20 and 40 cycles. Specific mechanical properities considered in this study include tensile, izod impact, and high rate Impact behaviors. In addition, the morphology of the fractured surface after Izod impact testing was investigated by the SEM (scanning electron microscope).

  • PDF

The Dielectric Analysis of Insulators for Home Appliances (가전설비용 절연재의 유전열 분석)

  • Jung, Jin-Soo;Jung, Jong-Wook;Yi, Gun-Ho;Bae, Seok-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.206-207
    • /
    • 2006
  • This paper describes the dielectric analysis of several insulators for home appliances. The dielectric characteristics of ABS(acrylonitrile butadiene styrene) were tested in relative permittivity, dielectric loss($tan{\delta}$) and specific resistance and compared with those of the other 4 insulators of PE(polyethylene) series. As a result, the relative permittivity of only the ABS slightly decreased with temperature. In the case of the tan6, the ABS showed higher dielectric loss than the other insulators but more excellent thermal performance. In addition, its changing pattern in specific resistance was very similar to that in $tan{\delta}$.

  • PDF

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • 제39권4호
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Development of Solar Energy Concentration for Plastic Joining

  • Yarlagadda, P.;Kim, I.S.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents development of a SEC(Solar Energy Concentration) utilizing the concentrated solar beam radiation for joining engineering thermoplastics such as Acrylonitrile/Butadiene/Styrene(ABS), Polycarbonate(PC) and Polymethylmethacrylate (PMMA). In addition, to study the joining of the materials, necessary experimentation with applying primer was performed. Tensile tests were conducted to determine the bond strength achieved at the specimen Joint interface. Microscopic examinations of the fractured joints were performed in order to analyze the overall bond quality. Finally, the results in terms of bond strength achieved at the joint interface and energy consumed in the process was compared with those obtained with similar thermoplastic joining technique utilizing microwave energy.

  • PDF

Properties of SBS-modified Warm-mix Asphalt Binders (SBS 개질 준고온 아스팔트 바인더의 특성)

  • Kim, Sung Un;Lee, Sung Jin;Youn, Yeo;Kim, Kwang Woo
    • International Journal of Highway Engineering
    • /
    • 제16권2호
    • /
    • pp.19-24
    • /
    • 2014
  • PURPOSES : The study objective was to evaluate rheology and physical properties of SBS-modified warm-mix asphalt (WMA) binders in comparison with hot-mix asphalt (HMA) binders. METHODS : Four different SBS polymers were used to prepare polymer-modified asphalt (PMA) binders, and three different warm-mix additives (WAD) were used to prepare a total of 12 WMA PMA binders. The kinematic viscosity was measured at 115, $135^{\circ}C$. The PG was determined using DSR and BBR. The pass/fail (P/F) temperatures for high and low PG grading were evaluated for HMA PMA and WMA PMA binders. RESULTS : PG 76-22 binders could be prepared by modifying the base binder (PG 64-22) using 4.5 wt% of SBS. The kinematic viscosity (KV) of SBS PMA was increased by 3 times higher than that of base asphalt. The SBS PMA with WAD showed 10% lower KV than that of the normal SBS PMA at $115^{\circ}C$ The high P/F temperatures showed almost no difference between HMA PMA and WMA PMA binders. The high P/F temperature showed very high correlations with KV ($R^2$ > 0.97). The result of SBS modification caused increase of low P/F temperature by $2.7^{\circ}C$ on average. CONCLUSIONS : Since the PMA with WAD showed 10% lower KV than normal (HMA) PMA at $115^{\circ}C$, reducing PMA mixture temperature down to a WMA level was possible in this study. The higher KV binders showed the higher P/F temperature. There was almost no change in high P/F temperature due to the use of WAD. The SBS PMA, showing an increased low P/F temperature, might show somewhat poorer performance at low-temperature, even though the lower PG grade was staying at the same level, i.e., $-22^{\circ}C$.

Organic/inorganic Hybrid Electrolytes for the Application of Direct Methanol Fuel Cell (DMFC) - Preparation and Properties of Sulfonated SEBS (SSEBS)-clay Hybrid Membranes - (직접메탄올 연료전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성 -)

  • Nam Sang Yong;Park Byung-Kil;Kong Sung-Ho;Kim Young Jin
    • Membrane Journal
    • /
    • 제15권2호
    • /
    • pp.165-174
    • /
    • 2005
  • Sulfonated poly(styrene-ethylene-butadiene-styrene) (SSEBS)-clay hybrid membranes were prepared by solution method. In the preparation of hybrid membrane, the amount of clay content was fixed to 5 phr and montmorillonite (MMT) was fully exfoliated by the SEBS and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was fully diminished. Gas permeability, mechanical properties and thermal properties of the SSEBS-clay hybrid membranes were investigated. Gas permeability through the SSEBS-clay hybrid membranes decreased due to increased tortuosity made by exfoliation of clay in SEBS.

Performance Evaluation of RAP and WMA Mixtures Located in MN/Road Test Cells through Air Voids Analyses (MN/Road 시험포장 구간내의 공기량 측정 및 결과값 분석을 통한 RAP 및 저온 아스팔트(WMA) 혼합물의 특성 평가)

  • Moon, Ki Hoon;Falchetto, Augusto Cannone;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • 제16권4호
    • /
    • pp.63-74
    • /
    • 2014
  • PURPOSES: This research is to evaluate the mechanical performance of different types of Hot Mix Asphalt (HMA) pavement cells prepared for MN/Road field testing section through an extensive experimental analysis of air voids and simple statistical evaluation tools (i.e. hypothesis test). METHODS: An extensive experimental work was performed to measure air voids in 82 asphalt mixture cores (238 samples in total) obtained from nine different types of road cell located in MN/Road testing field. In order to numerically and quantitatively address the differences in air voids among the different test Cells built in MN/Road, a simple statistical test method (i.e. t-test) with 5% significance was used. RESULTS: Similar trends in air voids content were found among the mixtures including conventional HMA, Reclaimed Asphalt Pavement (RAP) and Warm Mix Asphalt (WMA) combined with taconite aggregate this provides support to the use of RAP and WMA technology in the constructions of asphalt pavement. However, in case of acid modified HMA mixtures, significant differences in air void content were observed between on the wheel path and between wheel path location, which implies negative performances in rutting and thermal cracking resistances. Conclusions : It can be concluded that use of RAP and WMA technology in the construction of conventional asphalt pavement and the use of PPA (Poly Phosphoric Acid) in combinations with SBS (Styrene Butadiene Styrene) in asphalt binder production provide satisfactory performance and, therefore, are highly recommended.

A Study on the resistance of acrylic rubber pressure sensitive adhesives with curing agents and tackifiers (경화제와 점착부여제가 아크릴 고무점착제의 내열성에 미치는 영향)

  • Nam, Kyong min;Kim, Chul Yong;Kim, Eun Seon;Kim, Kwang-Je;Choi, Woo Jin;Kim, Ki-Tae;Park, Myung-Chul
    • Journal of Adhesion and Interface
    • /
    • 제18권4호
    • /
    • pp.166-170
    • /
    • 2017
  • In this study, acrylic rubber pressure sensitive adhesives was polymerized with 2-ethylhexyl acrylate, styrene, butadiene, 2-hydroxyethyl acrylate, and acrylic acid by controlling the initiator content. The initial tackiness, peel strength, holding power, and heat resistance of the PSAs were investigated by changing the content of tackifier and curing agent. The results showed that the initial tackiness and peel strength increased as the content of tackifier increased, whereas the holding power decreased. Also, the results exhibited that that the initial tackiness, peel strength, and heat resistance decreased as the content of curing agent increased, whereas the holding power and decreased.

Recycling of Red Mud as Plastic Fillers (플라스틱 Filler로서의 적니의 재활용)

  • Kim, Jeong Ho;Soh, Young Soo;Kim, Joon-Hyung
    • Clean Technology
    • /
    • 제5권2호
    • /
    • pp.45-52
    • /
    • 1999
  • Recycling of red mud from the aluminium manufacturing process was investigated to be utilized as plastic fillers. High density polyethylene(HDPE), low density polyethylene(LDPE) and polypropylene(PP) were found to be the suitable plastic material for which red mud can be used as fillers. With the addition of red mud the plastic showed red brown color. As the ratio of amount of red mud to plastic increased, the tensile strength increased while the Izod impact strength decreased. About five percent of ethylene vinyl alcohol(EVA) was needed as an additive to prevent the lowering of impact strength. Maleic anhydride modified polypropylene was effective for reduction of impact strength lowering of PP. Mixed waste plastics containing LDPE, HDPE, PP, polystyrene and ABS could also accommodate red mud as fillers. In this case, significant loss in mechanical properties were observed due to immiscibility between the components. Ethylene propylene rubber(EPR) and styrene butadiene styrene block copolymer (SBS) could be used to improve the impact properties of the commingled waste plastics.

  • PDF

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제32권2호
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.