• Title/Summary/Keyword: styrene-butadiene-styrene

Search Result 330, Processing Time 0.022 seconds

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

Determination of homogeneity index of cementitious composites produced with eps beads by image processing techniques

  • Comak, Bekir;Aykanat, Batuhan;Bideci, Ozlem Salli;Bideci, Alper
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.107-115
    • /
    • 2022
  • With the improvements in computer technologies, utilization of image processing techniques has increased in many areas (such as medicine, defence industry, other industries etc.) Many different image processing techniques are used for surface analysis, detection of manufacturing defects, and determination of physical and mechanical characteristics of composite materials. In this study, cementitious composites were obtained by addition of Grounded Granulated Blast-Furnace Slag (GGBFS), Styrene Butadiene polymer (SBR), and Grounded Granulated Blast-Furnace Slag and Styrene Butadiene polymer together (GGBFS+SBR). Expanded Polystyrene (EPS) beads were added to these cementitious composites in different ratios (20%, 40% and 60%). The mechanical and physical characteristics of the composites were determined, and homogeneity indexes of the composites were determined by image processing techniques to determine EPS distribution forms in them. Physical and mechanical characteristics of the produced samples were obtained by applying consistency, density, water absorption, compressive strength (7 and 28 days), flexural strength (7 and 28 days) and tensile splitting strength (7 and 28 days) tests on them. Also, visual examination by using digital microscope, and image analysis by using image processing techniques with open source coded ImageJ program were performed. As a result of the study, it is determined that GGBFS and SBR addition strengthens the adhesion sites formed as it increases the adhesion power of the mixture and helps to get rid of the segregation problem caused by EPS. As a result of the image processing analysis it is demonstrated that GGBFS and SBR addition has positive contribution on homogeneity index.

Wear Behavior of Silica filled Styrene-Butadiene Rubber: A Comparative Study Between the Blade-Type and Akron-Type Abrader

  • Gi-Bbeum Lee;Dongwon Kim;Seowon Lee;Seonhong Kim;Myung-Su Ahn;Bismark Mensah;Changwoon Nah
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of the particle size and silica structure on the wear behavior of Silica/Styrene-Butadiene Rubber (SBR) compounds was investigated using a blade-type abrader and the findings were compared with those obtained with an Akron abrader. The compensated characteristic parameter (Ψc), which was the contributory factor of the combined effect of the particle size and filler structure, was introduced. This parameter was found to exhibit a linear relationship with the Young's modulus. The Young's modulus correlated more with Ψc than the uncompensated characteristic parameter (Ψ) modeled for carbon black. The wear rate and volume loss measured using a blade-type abrader and Akron abrader were respectively observed to be inversely proportional to Ψc, that is, the wear resistance of Silica/SBR compound improved as the particle size became smaller and the silica structure became intricate. The coefficient of determination (R2) obtained from the linear relationship between Ψc and wear rate was higher than those between Ψc and volume loss for the Silica/SBR compound. Thus, the blade-type abrader exhibited high potential to be used for accurately evaluating the effect of particle size and structural properties of silica on the wear behavior of SBR compounds.

Evaluation of Application of 3D Printing Phantom According to Manufacturing Method (구성 물질에 따른 3D 프린팅 팬텀의 적용 평가)

  • Young Sang Kim;Ju Young Lee;Hoon Hee Park
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2023
  • 3D printing is a technology that can transform and process computerized data obtained through modeling or 3D scanning via CAD. In the medical field, studies on customized 3D printing technology for clinical use or patients and diseases continue. The importance of research on filaments and molding methods is increasing, but research on manufacturing methods and available raw materials is not being actively conducted. In this study, we compare the characteristics of each material according to the manufacturing method of the phantom manufactured with 3D printing technology and evaluate its usefulness. We manufactured phantoms of the same size using poly methyl meta acrylate (PMMA), acrylonitrile butadiene styrene (ABS), and Poly Lactic Acid (PLA) based on the international standard phantom of aluminum step wedge. We used SITEC's radiation generator (DigiRAD-FPC R-1000-150) and compared the shielding rate and line attenuation coefficient through the average after shooting 10 times. As a result, in the case of the measured dose transmitted through each phantom, it was confirmed that the appearance of the dose measured for phantoms decreased linearly as the thickness increased under each condition. The sensitivity also decreased as the steps increased for each phantom and confirmed that it was different depending on the thickness and material. Through this study, we confirmed that 3D printing technology can be usefully used for phantom production in the medical field. If further development of printing technology and studies on various materials are conducted, it is believed that they will contribute to the development of the medical research environment.

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Formulation and In vitro Evaluation of Transdermal Drug Delivery System for Galantamine

  • Hossain, Md. Kamal;Subedi, Robhash Kusam;Chun, Myung-Kwan;Kim, Eun-Jung;Moon, Hwan-Shik;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The effects of different formulation variables including pressure sensitive adhesive (PSA), permeation enhancer, thickness of the matrix and loading amount of drug on the transdermal absorption of galantamine were investigated across the hairless mouse skin. The permeation profile of galantamine was different depending on the types of PSA, loading amount of drug, thickness of the matrix and type of enhancer used. Highest flux of galantamine was obtained from acrylic PSA but crystals were formed in the patch within 72 h. Among the PSAs screened, crystal formation was not observed only in the patches formulated in Styrene Butadiene Styrene (SBS) matrix. Permeation rate increased linearly as the concentration of galantamine in SBS matrix increased from 2.5 to 15% w/w. Among the enhancers screened, Brij$^{(R)}$ 30 provided highest flux of galantamine. Matrix thickness of 80 ${\mu}m$ was optimum for maintaining adhesiveness as well as consistently delivering galantamine for longer period of time.

The Effect of Acrylic Emulsion on Coated Paper Properties (아크릴 에멀젼이 도공지 물성에 미치는 영향)

  • Kim, Sun-Kyung;Park, Yong-Chul;Jung, Hae-Sung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • This study was carried in order to manufacture the high quality coated paper. High quality includes not only physical and optical properties of coated paper but also final print quality. In this study, new acrylic-styrene emulsion was polymerized in laboratory and compared with conventional styrene-butadiene latex. Low-shear viscosity of coating color was decreased with increasing acrylic-emulsion dosage. Small amount of acrylic emulsion addition increased water retention, but further addition decreased it. Acrylic-emulsion addition improved paper gloss, brightness and whiteness, but decreased PPS and opacity slightly. Ink gloss was increased with using No. 3 acrylic-emulsion due to lower ink setting properties. However No. 1 and 2 emulsion showed the opposite result. Surface strength of coated paper was increased with using No. 3 acrylic-emulsion. These results indicate that high quality coated paper can be manufactured with using No. 3 acrylic-emulsion.

Evaluation of Poisson's Ration of Polymer-Modified Asphalt Concretes (폴리머 개질 아스팔트 콘크리트의 푸아송비에 관한 실험적 연구)

  • 김광우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.104-105
    • /
    • 1999
  • This study was performend to examine Poisson's ration of polymer-modified asphalt concrete due to temperature variatino . Asphalt binder used in this study was an AC85-100, penetration grade of 85-100, and polymer for modifying asphalt were domestic LDPE(Low-density polyethylene) and SBS(Styrene-butadiene-styrene). Aggregate was a crushed gneiss which was most widely used in the middle part of Korea. Using these materias, asphalt mixture slab(340mm$\times$240mm$\times$80mm) with optimum asphalt content from mix design was made and cut into square pillar (80mm$\times$80mm$\times$160mm). Poisson's ration was measured in various temperture (-15$^{\circ}C$, -1$0^{\circ}C$, -5$^{\circ}C$,$0^{\circ}C$,5$^{\circ}C$,1$0^{\circ}C$ and 2$0^{\circ}C$) under the load of one axis repeated compression mode. Poisson's ration of normal asphalt polymer modified asphalt mixtures in normal temperatures. This indicated that AP mixture was more susceptible to temperature effects. From regression aalysis of experimental results, the difference of Poisson's ration between normal and low temperature showed that polymer modified asphalt mixture were lower than AP mixture except for SBS modified asplat mixture.

  • PDF

Pavement Performance Model Development Using Bayesian Algorithm (베이지안 기법을 활용한 공용성 모델개발 연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-97
    • /
    • 2016
  • PURPOSES : The objective of this paper is to develop a pavement performance model based on the Bayesian algorithm, and compare the measured and predicted performance data. METHODS : In this paper, several pavement types such as SMA (stone mastic asphalt), PSMA (polymer-modified stone mastic asphalt), PMA (polymer-modified asphalt), SBS (styrene-butadiene-styrene) modified asphalt, and DGA (dense-graded asphalt) are modeled in terms of the performance evaluation of pavement structures, using the Bayesian algorithm. RESULTS : From case studies related to the performance model development, the statistical parameters of the mean value and standard deviation can be obtained through the Bayesian algorithm, using the initial performance data of two different pavement cases. Furthermore, an accurate performance model can be developed, based on the comparison between the measured and predicted performance data. CONCLUSIONS : Based on the results of the case studies, it is concluded that the determined coefficients of the nonlinear performance models can be used to accurately predict the long-term performance behaviors of DGA and modified asphalt concrete pavements. In addition, the developed models were evaluated through comparison studies between the initial measurement and prediction data, as well as between the final measurement and prediction data. In the model development, the initial measured data were used.

Effect of cement as mineral filler on the performance development of emulsified asphalt concrete

  • Liu, Baoju;Wu, Xiang;Shi, Jinyan;Wu, Xiaolong;Jiang, Junyi;Qin, Jiali
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.515-526
    • /
    • 2020
  • Cold-mixed asphalt mixture is a widely recommended asphalt pavement materials with potentially economic and environmental benefits. Due to the reduction of natural non-renewable mineral resources, powder minerals with similar properties are considered as new mineral fillers in asphalt mixtures. This study explored the feasibility of using cement to replace natural limestone powder (LP) in emulsified asphalt concrete modified by styrene-butadiene styrene copolymer. The experimental tests, including compressive strength, Marshall stability as well as moisture susceptibility test, were used to investigate the mechanical properties, the Marshall stability, flow value, as well as the moisture damage. In addition, the influence of material composition on the performance of asphalt concrete is explained by the microstructure evolution of the pore structure, the interface transition zone (ITZ), and the micromorphology. Due to mineralogical reactivity of cement, its replacement part of LP improved the mechanical properties, Marshall stability, but it will reduce the moisture susceptibility and flow value. This is because with the increase of the cement substitution rate, the pore structure of the asphalt concrete is refined, the width of ITZ becomes smaller, and the microstructure is more compact. In addition, asphalt concrete with a larger nominal particle size (AC-16) has relatively better performance.